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ABSTRACT

The ability to efficiently and accurately extract features of inter-
est is an extremely important tool in the field of scientific visu-
alization as it allows researchers to isolate regions based on their
domain knowledge. However, the increasing size of large-scale
datasets often forces users to rely on distributed computing envi-
ronments which have many drawbacks in terms of interaction and
convenience. Many of the current feature extraction techniques
are designed around these distributed environments. The ability
to overcome the memory and bandwidth limitations of desktop PCs
can broaden their usability towards large-scale applications. In this
work, we present a new hybrid feature extraction technique which
combines GPU-accelerated clustering with the multi-resolution ad-
vantages of supervoxels in order to handle large-scale datasets on
standard desktop PCs. Furthermore, this is paired with a user-driven
uncertainty-based refinement approach to enhance extraction re-
sults into a desired level of detail. We demonstrate the effectiveness
and interactivity of this technique using a number of application
specific examples utilizing large-scale volumetric datasets.

Keywords: Segmentation, multi-resolution, hierarchical cluster-
ing, volume data, large-scale data.

1 INTRODUCTION

Feature extraction in volumetric datasets is an extremely popular
tool with many different uses. Firstly, it allows researchers to iso-
late regions based on a desired set of qualities. The location, shape,
and evolution of these regions allows users to gain scientific insight
into the system they are studying. Next, it is a powerful data reduc-
tion tool. With the growing size of datasets, the ability to extract and
operate on subsets from data has become a necessity. Lastly, fea-
ture extraction allows a system to distinguish objects from a “back-
ground” and even from one another. Such a distinction becomes
important for techniques such as transfer function generation and
even has numerous applications in computer vision.

The increasing size of large-scale datasets often forces re-
searchers to rely on the increased computational resources of a dis-
tributed computing environment. As a result, many of the current
feature extraction techniques which operate on large-scale data are
designed for a distributed setting. However, these environments
do have a number of drawbacks in terms of interactivity and con-
venience. For example, there is the need to compete with other
users over computational resources resulting in long queues and
wait times before executing a job. In addition, the computing en-
vironment and available toolkits/libraries are often limited. In the
field of visualization, interactivity in data exploration becomes key.
Working in a remote environment limits any feedback and interac-
tivity according to available network bandwidth. As a result, many
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scientists tend to prefer analyzing their datasets locally on a desk-
top PC where they have more control over their system. The ability
to overcome the memory and computational limitations of desktop
PCs can make them more applicable towards large-scale applica-
tions.

Traditional feature extraction and data clustering techniques can
generally be classified into two main approaches. The first approach
evaluates the volume as a whole and groups discrete components
based on a similar set of properties. This can provide a meaning-
ful approximation of the underlying segments, but may lose track
of precise data discontinuities. Using a voxel-based K-means clus-
tering would be an example of such an approach. This normally
requires the number of clusters to be known a priori and has a com-
plexity that depends on the number of initial clusters, the data do-
main size, and the number of iterations it takes to converge. The
other approach works on a local level and identifies coherent or
connected components. It can accurately detect discontinuities but
is sensitive to noise perturbation and may segment a region into too
many components. An example of this approach would be seeded
region growing and has a complexity based heavily on the size and
resolution of the extracted feature.

Each method alone has a number of advantages and disadvan-
tages which become increasingly evident in large-scale datasets. In
this work, we present a new hybrid feature extraction technique
which combines a GPU-accelerated version of the SLIC [1] clus-
tering technique with the multi-resolution advantages of “super-
voxels” in order to handle large-scale datasets on standard desk-
top PCs. Rough clustering results are then further refined using an
uncertainty-driven approach to enhance extraction results into a de-
sired level of detail. A hybrid approach like the one presented here
allows one to retain many of the advantages of various feature track-
ing techniques. Furthermore, our GPU-accelerated method allows
users to process and explore their large-scale datasets in real time
on a local desktop PC without the drawbacks of a remote distributed
system.

In this paper, we present our new hybrid extraction technique and
make the following contributions:

e We present a new GPU-accelerated hybrid feature extraction
technique for large-scale data.

e We pair this technique with the multi-resolution advantages
of supervoxels in order to handle large datasets on a desktop
PC.

e We provide an uncertainty-driven feature refinement method
to enhance extraction results.

We demonstrate the effectiveness of our algorithm using several
real world large-scale datasets, including large combustion, ocean,
and flow simulation data. Using each of these datasets we can
achieve real time extraction and exploration capabilities on a local
desktop computer.

2 RELATED WORK

Feature extraction is a well studied technique for analyzing spatial-
temporal data in many scientific simulations both in scalar and



vector field study [13, 15]. There are plenty of papers cov-
ering the extraction and evolution of individual features, such
as [3, 4, 10, 16, 17, 23]. Based on the data granularity and type of
features that need to be extracted, different segmentation schemes
are used. Many approaches begin with low level feature attributes
such as the intensity, color, and gradient of a pixel/voxel and/or its
neighborhood. These tend to iteratively group the similar compo-
nents into larger clusters.

Among many techniques for feature extraction, region growing
can be considered as an effective bottom-up approach to detect and
isolate features of interest that have spatial or temporal coherency.
It is widely studied in the image processing and 3D volumetric data
analysis to assist classification and assessment steps [9]. Muelder
et al. [14] further improved the region growing performance by uti-
lizing region coherency over consecutive time steps.

On the other hand, other approaches favor multi-resolution
schemes that can analyze volume data at various scales. Huang
et al. [8] employed morphological operations to capture structural
information at various scales. The contour tree [5, 19, 20] and Reeb
graph [23] are also used to define the features of interest.

Many of the aforementioned approaches work well when the
data set is a manageable size. However, as the simulation res-
olution keeps increasing, it has become necessary to accompany
the data generation phase with a scalable solution for visualizing
and analyzing the simulation results to extract valuable insight.
Work has also been done to parallelize and accelerate these tech-
niques [18, 22]. These approaches directly work on individual vox-
els whose attributes (scalar value, gradient, etc.) are used in deter-
mining a similarity metric. In contrast, Bremer al et. [3] uses a topo-
logical technique to construct a hierarchical merge tree as indexing
for feature representation that is orders of magnitude smaller than
the original simulation data. However, their method targets feature
extraction as a post-processing step, while our approach is suitable
for in-situ settings where dumping all time steps in full resolution is
not feasible given the increasing gap between data generation speed
and limited I/O bandwidth.

While the aforementioned techniques have been proven to be
successful in their respective domains, they do not directly provide
enough flexibility for users to balance the quality of segmentation
results with the computational complexity. Many of these tech-
niques work on a raw pixel/voxel level making them computation-
ally inefficient in large-scale applications since many 3D datasets
can contain several billions of grid points, each with multiple vari-
ables. In the large-scale data visualization setting, it is often ideal
to provide a fast response to a user’s query on the data in question
at a reasonable level of accuracy. This can then be further refined
on an as needed basis depending on a desired level of accuracy. The
hybrid technique presented in this paper focuses on providing such
capabilities.

3 METHODS

Our approach is motivated by the idea of giving users fast re-
sponse time when exploring and extracting features of large volume
datasets on a local desktop machine. As a result, many of the steps
involved in our algorithm are designed to provide a (potentially)
user-controlled balance between the performance and accuracy of
each step. Different datasets have a very large range in underly-
ing data patterns and in many cases must be treated differently to
achieve a quick accurate extraction result.

3.1 Overview

An overview of our approach can be seen in Figure 1. Our approach
starts with a preprocessing step that partitions the volumetric data
into a set of equally sized blocks called supervoxels. Each super-
voxel can represent a 23, 33, etc. space of voxels and is similar to a
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Figure 1: An overview of our system pipeline, blue components rep-
resent the technique introduced in this paper. The section outlined in
red can be done either as a preprocessing step or during a simulation
run (in situ).

down-sampling of the full volumetric dataset. This ensures interac-
tive response times when generating rough initial extraction results.
While this is often a fast preprocessing step, it can alternatively be
implemented in situ and saved along with the rest of the simulation
data. This is to alleviate the burden of disk I/O when working with
massive datasets. Supervoxels are generated using the GPU where
additional statistical metrics are computed, such as the average in-
tensity value and standard deviation of internal raw voxel values.
These metrics are later used to determine which supervoxels need
to be refined to generate a more accurate extraction result.

Next, we apply a GPU-accelerated version of the Simple Linear
Iterative Clustering (SLIC) algorithm [1] to partition similar super-
voxel blocks into a set of clusters. Note that the term supervoxel
in [1] is used differently than in this paper. Since the number of
clusters is predetermined by this algorithm, we include a merge step
which combines similar clusters in a hierarchical fashion. Lastly
we use uncertainty metrics based on the standard deviation of val-
ues within a supervoxel to guide users in selecting which parts of
the extraction result must be refined. This refinement step will fetch
the high resolution raw voxel data only for portions of the extrac-
tion result that display a high uncertainty in accuracy. The final
result will therefore contain data values at both the lower super-
voxel resolution and the higher raw data resolution depending on
the underlying nature of the dataset.

3.2 Supervoxel Generation

The supervoxel generation step is similar to many approaches used
to down-sample large scale data. In our implementation, each su-
pervoxel represents an equally sized block of the original volume
data. The resolution of the supervoxel depends on the number of
raw data voxels contained inside. For example, we say that a su-
pervoxel containing 3x3x3 = 27 raw data voxels has a resolution of
3. We can choose the resolution of supervoxels to use based on the
size of the original raw dataset with larger resolutions required as
the data becomes larger.

This conversion step is implemented using GPU-acceleration.
The raw volume data is loaded into the GPU as a 3D texture, where
it resides in global memory. We then define one GPU thread for
every supervoxel which accesses the raw data values of the volume
texture. The average intensity and standard deviation are computed
for each supervoxel in parallel. This intensity value is used as input
into clustering in the next step while the standard deviation is used
later during the uncertainty-based refinement step. Since this step
can be executed very quickly, we perform it at run time and give
users control over the desired supervoxel resolution. Note that if
the volume does not fit entirely in GPU memory we process it in
chunks. Performance results for the supervoxel generation step are
discussed in more detail in the results section of this paper.



Figure 2: SLIC clustering results on a combustion simulation dataset
shown on a 2D slice. This particular example shows a balance be-
tween the proximity and intensity weights used. The top left and top
right images show the two extreme cases where the proximity and
intensity weights are set to zero respectively.

3.3 3D Supervoxel Clustering via SLIC

To efficiently identify features from the supervoxel volume, we
transform a simple but efficient image clustering technique called
Simple Linear Iterative Clustering (SLIC) [1] to segment the su-
pervoxel volume into a number of different clusters. In our imple-
mentation, this algorithm is treated in a 3D sense and accelerated
using the GPU to ensure fast clustering times. Since we are operat-
ing on the supervoxel volume rather than raw large-scale data, this
clustering result can also be done on the fly in real time.

The SLIC approach is very similar to k-means clustering, but
varies in two main aspects. First, instead of computing the dis-
tance from each cluster center to all voxels in the entire domain, the
search space is limited to within a region proportional to the cluster
size. Second, the distance metric used combines intensity and spa-
tial proximity which provides control over the size and compactness
of the clusters. The initial cluster centers are selected on a regular
grid in 3D volume with interval length of S;(i € {0,1,2}) for each
dimension. The length S; is determined by the number of initial
clusters k; and the extent of the volume »; in each corresponding
dimension; S; = N;/k;. For each iteration, the algorithm assigns
each voxel to the most similar cluster, updates the cluster centers,
and repeats until a certain stopping criteria is met.

SLIC is computationally less expensive than the conventional k-
means algorithm because its distance metric measuring similarity
is computed within a 25 x 28] x 25, local region centered at each
cluster center. We define the distance metric as:

dy; = wil|cg — vill2 +wo |l — I

where [;, and [; are the scalar values at the kth cluster center and
voxel i respectively; ¢y, is the position vector of cluster center k, and
v; is that of voxel i. w| and w, are weights. Increasing w; would
result in a clustering biased towards spatial proximity and as a re-
sult preserves more compactness. Increasing wp would cause the
clustering to adhere more tightly to the boundaries between varying
scalar values. Figure 2 demonstrates a series of different clustering
results on a 2D slice of a volume data with different combinations
of wy and wjy. Figure 3 shows an example of a clustering result in
3D after just one iteration.

By localizing the search within a 25y x 28] x 25, volume during
clustering, the computational complexity of the SLIC algorithm is
independent of k and scales with O(N). In contrast, the classical

Figure 3: The result of the first iteration after our 3D SLIC imple-
mentation on a combustion simulation data set. The color encodes
different cluster IDs. In this case, 8x8x8 cluster centers in a grid lay-
out are initialized. Even after one iteration, the salient structure and
similar features are captured by the SLIC approach.

k-means has O(kN) complexity for each iteration. This distinction
is important when dealing with large-scale 3D volume data rich in
features where k must also be large. There are also other popular
algorithms whose clustering results are similar to that of SLIC such
as Turbopixels [12] and Quickshift [21]. However, SLIC is supe-
rior to many of these approaches in terms of segmentation quality
and is faster with a smaller memory requirement. Lastly, we ac-
celerate this step using the GPU. The supervoxel volume is loaded
as a 3D texture into global memory. The embarrassingly parallel
nature of this technique allows us to compute the distance metric
between each cluster and supervoxel simultaneously via a separate
GPU thread.

3.4 Hierarchical Merging

The aforementioned SLIC method often over-segments the super-
voxel volume into many small clusters, and within each cluster the
supervoxels share similar intensities and are within a close spatial
proximity. After applying SLIC, small clusters of supervoxels are
generated. We use these clusters to generate a hierarchical cluster-
ing result by merging the clusters of supervoxels. If one imagines
a hierarchical clustering as tree-like structure, the output from the
SLIC step would generate nodes found towards the bottom of the
tree and merging clusters will build up this structure towards a root
node.

One disadvantage of employing SLIC as a clustering step is that
it produces many redundant clusters in homogeneous regions such
as the background. As seen in Figure 3, while capturing basic flame
structure, SLIC also creates many similar cube-like clusters in the
background region. Ideally, one cluster suffices to represent the
background even though it has subtle variation in its scalar value.
Therefore, it is necessary to combine similar clusters into one larger
cluster. We would like to first consider those clusters that are both
spatially adjacent and are close in terms of the user-specified dis-
tance metric. Therefore, a reduce operation is needed to coalesce
groups of clusters identified by the SLIC step and reconstruct the
connected structure.

Unfortunately, SLIC does not compute the topological connec-
tivity of the output clusters (similar to the marching cubes algorithm
that produces a ’soup’ of disconnected triangle elements [13]). As
the initial step of cluster merging, we work on building up the topo-
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Figure 4: An example of merging sets of clusters to construct a hierarchical partitioning. The blue and gray clusters are merged. This continues
until there is a desired level of variation within each cluster. For example, the green and gold clusters may merge in the next iteration.
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Figure 5: A 2D illustration of running template scheme to detect
neighboring clusters for every cluster. Each thread is mapped to the
center of a 3 x 3 template and iterates each pixel within the template.
The neighboring clusters i are marked on the ith column of row j
corresponding to the cluster j at the template center.

logical connectivity of clusters on GPU. The key idea of our topol-
ogy reconstruction step is to build an undirected graph G such that
each vertex v; € V represents cluster i. There exists an edge ¢;; € E
if and only if cluster i and j are spatially connected.

To efficiently build-up the adjacency matrix M where M[i, j] = 1
indicates an edge ¢;; € E in graph G, we utilize a running tem-
plate over each supervoxel in the cluster and check the neighbor-
ing cluster information. At each stop of the template, a 3 x 3 x 3
supervoxel-wise spatial region is searched. Let i denote the clus-
ter ID of the supervoxel at template center and j denote the cluster
ID of one of 26 neighboring supervoxels in the template. M|, j] is
tagged with 1 if i # j, otherwise M[i,j] = 0. The running tem-
plate scheme is computationally intensive since each supervoxel
will check its 26 neighborhoods. However, each supervoxel is in-
dependent from the others, and we can parallelize the process by
assigning a GPU thread to a supervoxel. Each thread checks its
neighboring supervoxels in parallel and tags the corresponding en-
try on the adjacency matrix. A 2D example case, is shown in Fig-
ure 5. A thread is assigned to work within a 3 x 3 template. The
center of the template belongs to cluster 3 and it has neighboring
clusters 0, 1, and 4 shown in different colors. Hence column 0, 1,
and 4 of row 3 in the adjacency matrix are tagged with 1.

Once the graph is constructed we can merge similar clusters by
combining the respective nodes in the graph and removing their
connecting edge. This step can be performed on the CPU since the
number of clusters is much smaller than the number of individual
voxels. An example of a merge can be seen in Figure 4.

3.5 Uncertainty-based Refinement

The aforementioned steps produce an extraction result on the su-
pervoxel level. However, studying the full resolution data is often
necessary in identifying subtle patterns. This final step focuses on
refining the supervoxel based clustering in regions of high uncer-

tainty. The uncertainty metric we use is based on the standard devi-
ation of the scalar data values of the raw voxels contained within a
supervoxel. This has already been computed during the supervoxel
generation step. Instead of refining every supervoxel in our cluster
of interest (a very computationally intensive task), users can choose
a desired level of uncertainty criteria through which the final result
must meet. Any supervoxels whose uncertainty is higher than the
user-defined threshold are therefore selected for refinement.

This refinement step requires retrieving the original raw data val-
ues associated with the supervoxel from disk. As they are loaded
into memory, each raw voxel value is compared against the cluster-
ing attributes used to generate the particular supervoxel cluster. If
this distance criteria is met, then the raw voxel is kept, otherwise it
is checked against any neighboring clusters and potentially added
to them. Once a supervoxel has been refined, its uncertainty value
drops to zero since we are now operating on the raw data values.
This results in an extraction result with multi-resolution compo-
nents and is represented as an additional level in our hierarchical
extraction result.

3.6 Implementation

The implementation is essentially a two-level technique with low
resolution clustering blocks and high resolution refinement bricks.
To generate supervoxels, we use OpenGL compute shader on Desk-
top PC or CUDA plus MPI on parallel supercomputer like Titan.
SLIC algorithm can also be implemented via either compute shader
or CUDA depending on their availability. Visualization of clus-
tered data like the one in Figure 8 is achieved by GPU ray-casting
through the coarse level SLIC cluster volume. The cluster volume
is stored in GPU 3D texture while the refinement blocks are dynam-
ically generated based on the uncertainty metric and are therefore
stored and fetched separately through 3D bindless textures since
they dramatically increase the number of unique textures available
to shaders at run-time. We utilize the hardware trilinear interpo-
lation within the same level, however, cross level interpolation is
not considered in our current implementation, thus discontinuity is
visible across the boundary.

4 RESULTS

We have conducted tests using three datasets from different appli-
cation domains. The first is a dataset generated from the turbulent
combustion simulations performed at Sandia National Laborato-
ries [6]. The second is a tropical oceanic data simulated by the Na-
tional Oceanic and Atmospheric Administration Geophysical Fluid
Dynamics Laboratory using Community Climate Model (CCSM):
Parallel Ocean Program 2 (POP2) [7]. The third dataset comes from
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Figure 6: (a) The SLIC clustering results using 2 x 2 x 2 initial cluster centers. (b) The clustering results after one iteration using 8 x 8 x 8 cluster
centers. (c) The result after applying merge. Many redundant cluster centers in the background are coalesced into one supercluster colored
in dark yellow, while the clusters corresponding to the flame structure remain unchanged with a slight color variation due to the reassignement
of cluster id’s. (d) Removing the background cluster and emphasizing the entire extracted flame features using intensity value and Euclidean
distance as distance metric. The supervoxels in each extracted cluster share both similar intensity and spatial proximity.

Figure 7: A 3D volume rendering of the combustion simulation data
using a mixture ratio variable. Fuel is injected from the lower left part
of the image into a region containing oxidizer. As it travels to the top
right, it mixes and burns with the surrounding medium.

large-scale flow studies conducted by Argonne National Labora-
tory [11].

4.1 Combustion Data

The phenomenon of combustion in 3D highly turbulent conditions
and mixed-modes has many new physical and chemical properties.
To better understand the complicated interactions, direct numerical
simulation is required to record and delineate the key turbulence-
chemistry interactions. Scientists at Sandia National Laboratories
have developed S3D [6] to tackle this challenge at large scale using
massive parallel supercomputers. The data set in our study has a
spatial resolution of 704 x 540 x 550 and each grid point contains
several variables. During the experiment, we consider the mixture
fraction field since it is one of the two key combustion parameters
associated with turbulent mixing and autoignition. It is a mixing
measure of fuel and oxidizer. The highest value represents pure
fuel and zero represents pure oxidizer. Figure 7 shows a 3D volume
visualization of the mixture ratio.

Figure 6 shows examples of applying the clustering scheme to
the combustion dataset. After the merge step, we can remove the
background and focus on exploring clusters that make up the flame
itself. Since we are clustering based on the mixture fraction, such an
extraction result is effective at highlighting the complex structures
that form in such a turbulent environment.

We also illustrate the usefulness of the refinement step. While
clustering and visualizing the supervoxel volume greatly improves

Without
refinement

Volume colored
by uncertainty

With
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Full resolution
volume

Figure 8: Top-left) Not performing refinement hides many of the de-
tails present in the flame structure. Top-right) Coloring supervoxels
according to their level of uncertainty. Pink regions represent super-
voxels which need to be refined to produce a more accurate extrac-
tion result. Bottom-left) Supervoxels with high levels of uncertainty
are refined revealing additional details in the data. Bottom-right) The
full resolution volume for comparison.

performance in large scale data, many important details can become
lost. Figure 8 shows supervoxels colored according to their uncer-
tainty level. We can see that the level of uncertainty varies through-
out the volume and highlights which supervoxels needs to be re-
fined to obtain a more accurate extraction result. Refining those
supervoxels by sampling the raw high resolution volume reveals
the finer structure of the combustion flame and results in an image
very similar to the full resolution volume.

4.2 Ocean Data

The POP simulation [7] is an ocean circulation model that is in-
tegral to many climate based research endeavors. Its complex 3D
nature allows for a detailed study of turbulent mixing processes be-
tween surface currents and the deep ocean. The ocean simulation
dataset has a resolution of 3600 x 2400 x 42. We use the magnitude



Figure 9: A 3D volume rendering of the clustering results on the
ocean simulation dataset based on velocity magnitude. The pres-
ence of many interconnected features near the south pole show an
increased variation in velocity when compared to regions near the
equator.

Figure 10: A 3D volume rendering of the clustering results on the
flow simulation dataset. The layer-like structures in the stratified flow
become clear once extracted.

of the ocean velocity field as the intensity value. In addition, since
the depth of the ocean is small compared to its surface area, we use
an asymmetric 20 x 20 x 1 layout of initial SLIC cluster centers.

Figure 9 shows the output of our extraction scheme on this
dataset. It is immediately evident that there are several interesting
structures that form in the southern hemisphere, whereas the re-
gions near the equator are more homogeneously distributed. Since
we are clustering based on the velocity field, the large numbers of
intertwined clusters, each containing a similar velocity magnitude,
suggest an increased amount of turbulence in those regions. This
is to be expected since regions near the poles are more strongly af-
fected by the Earth’s rotation and deep sea mixing. Real time 3D
feature extraction in such a dataset can allow users to explore the
intricate structures and driving forces behind this system.

4.3 Flow Data

The complex interaction between waves and turbulence in flows
drives many systems in a multitude of engineering applications and
physical phenomena. This particular simulation and study ‘“Param-
eter Studies of Boussinesq Flows” [11] focuses on understanding
the coupling between waves and slow motion by studying layer-
like structures in stratified flows as well as columnar structures in
rotating flows. With a size of 4096 x 4096 x 4096, it is the largest
of all of our test cases. Figure 10 shows an example output using
our extraction scheme. As expected, the resulting features represent
the layer-like structures found in the stratified flow and can aid sci-
entists in studying upscale and downscale energy transfers in these
systems.
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Figure 11: A breakdown of the performance results for each of the
extraction steps vs. supervoxel size for the combustion dataset.

4.4 Performance Results

The timing was measured on a desktop PC with two 2.4 GHz In-
tel Xeon CPUs and 24 GB DDR3 RAM with one GTX Titan X
graphics card with 12 GB of GPU memory.

We begin with the combustion dataset and investigate how differ-
ent supervoxel sizes affect the performance of each of the steps in-
volved in our feature extraction technique. We focus on this particu-
lar parameter since it has the largest impact on the overall extraction
time. In this example, 512 SLIC clusters were used for each test.
Graph 11 shows the timing results for each step of the algorithm
for a number of supervoxel sizes. We can see that the supervoxel
generation time increases slightly as the supervoxel size increases.
This is due to the fact that a larger number of raw voxels must be
sampled and used to compute the necessary statistical information
(mean and standard deviation). On the other hand, the time for the
SLIC step decreases as supervoxel size increases because there are
fewer supervoxels that need to be clustered. In addition, the merge
step time (which also includes the time to generate connectivity in-
formation between clusters) also decreases as the supervoxel size
increases. Once again, this is due to the ease of working with lower
resolution volume. The time to refine the volume into a desired
level of detail has the largest cost and depends heavily on the un-
derlying structure of dataset. It will be shown soon that the other
test datasets exhibit different trends when it comes to the cost of
the refine step. For this particular configuration the optimum super-
voxel size is 173 with an overall extraction time of 187 ms showing
that this type of analysis can be done interactively in real time.

The ocean dataset shows similar trends. In this example, 400
SLIC clusters were used for each test. Graph 12 shows the timing
results for each step of the algorithm. These times represent very
similar trends to those produced by the combustion dataset. How-
ever, the overall times are higher since the ocean dataset is larger
in scale. Nevertheless we can achieve decently interactive speeds
when extractin% features in the ocean data. The optimum super-
voxel size is 19 with an overall extraction time of 2299 ms. Since
this is the last data point, it could be possible that a larger super-
voxel size would result in an even lower extraction time.

The combustion and ocean datasets are manageable enough in
size so that disk read times are small enough to ensure interactive
speeds when performing the supervoxel generation step on a lo-
cal machine on the fly. However, the flow dataset, which consists
of hundreds of GB of information per time step, can incur a very
large I/0 overhead. As a result, it is often desirable to perform the
supervoxel generation step in situ during the corresponding simula-
tion. In this implementation, the simulation will not only produce
the large-scale high resolution volume, but the much smaller super-
voxel representation as well.
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Figure 12: A breakdown of the performance results for each of the
extraction steps vs. supervoxel size for the ocean dataset.

Table 1: Strong scaling. In situ supervoxel generation timing for the
flow dataset with a constant 8x8x8 supervoxel size.

#Nodes \ CPU to GPU (ms)  Supervoxel gen. (ms)  Write (ms)
128 1133 74 527
256 755 37 630
512 618 19 694

We estimate the amount of computation necessary to construct
the supervoxel representation if it were done in situ by conducting
performance tests on the Titan supercomputer at Oak Ridge Na-
tional Laboratory. Table 1 shows the timing results for construct-
ing an 8x8x8 supervoxel representation using a varying number of
compute nodes. We assume that the data for a particular timestep is
already locally available in memory and report the time to transfer
information into GPU memory, construct the supervoxel represen-
tation on the GPU, and then write the supervoxel data out to disk.
We can see that the GPU transfer time decreases as the number of
compute nodes increases since the overall volume can be split into
increasingly smaller components. Similarly, the supervoxel gener-
ation step also decreases. Lastly, we see that the disk write times
for the supervoxel volume increases slightly with more nodes since
there is a larger communication overhead when many nodes need to
write to a single file. These times are on the order of a few seconds
or less and show that the extra computation necessary for this in situ
step is small in comparison to the normal simulation computation
time (which tends to be much larger than a few seconds).

In addition, we can keep the number of compute nodes constant
(256 in this case) and look at how different supervoxel sizes af-
fect the time of each step. This is shown in Graph 13. The GPU
transfer time remains relatively constant since the entire volume
subset must be sent to the GPU regardless of the end resolution
of the supervoxel volume. Like the earlier results, the supervoxel
generation time increases slightly for larger supervoxel sizes since
a larger number of raw data values must be sampled in the GPU.
However, the time to output the new supervoxel volume to file de-
creases dramatically since a larger supervoxel size results in less
data that needs to be saved. Once again these times are on the order
of a few seconds or less per timestep and will likely reflect only a
small portion of the normal computation time of the simulation.

Continuing with the other steps of the algorithm, which are now
performed in real time on a local desktop machine, we can see the
timing results shown in Graph 14. In this example, 1000 SLIC
clusters were used for each test. Once again we see the same trends
for each of the remaining steps as observed in the previous two
datasets. However, the refinement step exhibits an entirely differ-
ent trend because it depends heavily on the underlying structure of
this dataset. The overall times are larger than the previous exam-
ples since this dataset is much larger. In this case, the optimum
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Figure 13: In situ timing results for parallel supervoxel generation vs.
supervoxel size.
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Figure 14: A breakdown of the performance results for each of the
extraction steps vs. supervoxel size for the flow dataset.

supervoxel size is 103 with an overall extraction time of 9159 ms
showing that we can simultaneously extract many coherent features
in such a large dataset on a desktop PC with very little overhead.

5 DISCUSSION

The above results demonstrate the ability of this technique to handle
datasets of various scales. While certain datasets are easily man-
aged using this scheme, other extreme-scale cases can be handled
through some additional in situ processing.

5.1 Data Size Limits on the Desktop PC

Using the datasets shown in this paper as an example, we can
see that the combustion (704 x 540 x 550) and ocean (3600 x
2400 x 42) datasets are easily manageable on a desktop PC us-
ing our extraction scheme. However, the much larger flow dataset
(4096 x 4096 x 4096) incurs a disk I/O time that is too large for
real time supervoxel generation. This is alleviated either through a
potentially lengthy one time preprocessing step into the supervoxel
volume or can be computed directly during the simulation itself.
Such a representation can be saved in conjunction with the full res-
olution version. The technique presented in this paper only fetches
the full resolution voxels in regions of the domain with a high un-
certainty and thus can extract high resolution features very quickly.

We were able to generate an extraction result for the flow dataset
in about 9 seconds, the majority of which consisted of fetching high
resolution voxels from disk during the refine step. Moreover, this
scheme was able to extract ~ 102 features simultaneously in such a
large volume on a desktop PC. This extraction cost only needs to be



repeated if input parameters, such as the number of clusters, SLIC
weights, refinement threshold, etc., need to change.

5.2 User-driven vs. Automatic Extraction

Our feature extraction technique is designed to be run in either a
user-driven or automatic manner. In the user-driven mode, input
is provided into each step in the algorithm to ensure an extraction
result that closely matches the interest of the user. While many of
these decisions are based on choosing an appropriate balance be-
tween accuracy and performance, others can fundamentally alter
which features are extracted. Note that the final uncertainty-driven
supervoxel refinement step attempts to minimize the differences ob-
served in the final extraction result based on initial supervoxel sizes.

Choosing an appropriate distance metric for the SLIC cluster
generation will have the largest impact on the final result. This
is where the user can choose which data variables and spatial
properties to emphasize. Knowledge over this matter is often do-
main specific, making a user-driven approach desirable in many
cases. Lastly, the uncertainty-driven refinements step allows users
to choose what level of accuracy the final extraction result must
meet. In certain cases a fast rough extraction is sufficient, while in
other cases a very detailed feature extraction is necessary to study
subtle patterns in the data.

In the automatic approach, the algorithm will generate its best
estimate of a desirable feature extraction result without any user
input. First, the system will automatically choose an appropriate
supervoxel resolution based on the scale of the raw dataset, namely
one that allows the supervoxel volume to fit entirely into GPU mem-
ory for fast access. Next, it will perform the SLIC utilizing a single
data variable with equal weights on intensity and spatial proxim-
ity. Lastly, the system will choose to refine a default fraction of
supervoxels. While the automatic approach uses a very simple set
of inputs, users may want to generate a fast general decomposition
of the data in order to become better acquainted with its structure
before attempting a more detailed exploration.

6 CONCLUSION

Overall, we develop a new hybrid feature extraction technique
which combines the multi-resolution advantages of supervoxels
with a GPU accelerated version of SLIC to efficiently manage
large-scale datasets on a desktop PC. Using an uncertainty-based re-
finement method, users can explore extraction results quickly while
enhancing detail in certain regions only when necessary. We are
able to show the applicability of this technique to a number of large-
scale real world datasets and justify its efficiency through perfor-
mance results.
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