
1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2620975, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 1

A Combined Eulerian-Lagrangian Data
Representation for Large-scale Applications

Franz Sauer, Member, IEEE, Jinrong Xie, Member, IEEE, and Kwan-Liu Ma, Fellow, IEEE

Abstract—The Eulerian and Lagrangian reference frames each provide a unique perspective when studying and visualizing results
from scientific systems. As a result, many large-scale simulations produce data in both formats, and analysis tasks that simultaneously
utilize information from both representations are becoming increasingly popular. However, due to their fundamentally different nature,
drawing correlations between these data formats is a computationally difficult task, especially in a large-scale setting. In this work, we
present a new data representation which combines both reference frames into a joint Eulerian-Lagrangian format. By reorganizing
Lagrangian information according to the Eulerian simulation grid into a “unit cell” based approach, we can provide an efficient
out-of-core means of sampling, querying, and operating with both representations simultaneously. We also extend this design to
generate multi-resolution subsets of the full data to suit the viewer’s needs and provide a fast flow-aware trajectory construction
scheme. We demonstrate the effectiveness of our method using three large-scale real world scientific datasets and provide insight into
the types of performance gains that can be achieved.

Index Terms—Flow visualization, particle data, volume data, multi-resolution, large-scale data, data structures.

F

1 INTRODUCTION

THE use of both Eulerian and Lagrangian data represen-
tations is becoming increasingly popular among today’s

scientists. Many current scientific simulations utilize “hy-
brid codes” which represent data in both reference frames
as the simulation runs [1], [2]. As a result, scientists often
choose to output simulation data in both formats. Since
the Eulerian and Lagrangian specifications each have a
unique set of advantages and disadvantages, scientists tend
to switch between each to study different phenomena.

In the Eulerian representation, values are measured on
a fixed spatial grid spanning the simulation domain (scalar
or vector fields). Such a grid is useful as it allows scientists
to study data fluctuations at unchanging locations in the
system of study. However, obtaining information from areas
that lie between grid points is limited to interpolation. The
Lagrangian representation follows the movement of discrete
parcels throughout the domain (particle data). The spatial
evolution of these parcels provides a unique perspective
that is missing in the Eulerian specification. However, due
to their free-form nature, it is not always guaranteed that
parcels will be present in a particular area of interest. More
information can be found in [3].

Traditionally, Eulerian and Lagrangian data is stored and
accessed separately for different analytical tasks. However,
drawing information from both representations is gaining
popularity as it allows scientists to utilize the advantages of
both reference frames [4], [5], [6], [7], [8], [9]. These examples
show the benefit of being able to exploit the interplay
between each format to gain a better understanding of the
data and its properties. Unfortunately, the differences inher-
ent in each format make this combination computationally

• Franz Sauer, Jinrong Xie, and Kwan-Liu Ma are with the Department of
Computer Science, University of California at Davis, Davis, CA, 95616.
E-mail: fasauer@ucdavis.edu, jrxie@ucdavis.edu, ma@cs.ucdavis.edu

Manuscript received April 19, 2005; revised September 17, 2014.

intensive, especially at large scales. This is namely due to the
lack of structure generally found in raw simulation particle
data and makes correlating sets of particles with associated
Eulerian grid points difficult. Scientists are looking for new
solutions to this growing problem.

Current techniques, such as octrees and k-d trees, can
spatially organize both the Lagrangian particles and un-
structured Eulerian grids with respect to the overall sim-
ulation domain. Such organization techniques have been
shown to improve computational efficiency when working
with either of these data formats (Section 2.1). If both the
Lagrangian and Eulerian data are organized using simi-
lar techniques, correlations between the data types can be
found more efficiently by matching values in similar spatial
locations. While this can be a useful workaround, it still
treats both data representations as separate entities and uses
an intermediate mechanism to draw connections. In this
work, we present a new application of indexing-based data
structures that can combine both reference frames into a
joint Eulerian-Lagrangian representation. By eliminating the
“middle-man”, we can achieve significant improvements
over existing methods and provide an efficient out-of-core
means of sampling, querying, and operating with both
representations simultaneously.

This combined Eulerian-Lagrangian representation also
opens new venues in the area of intelligent multi-resolution
data sampling. As we push towards ever increasing dataset
sizes, the ability to extract and visualize subsets of the full
data becomes a necessity. This scalability concern is twofold
as it relates to both the computational ability of the system to
handle the data amount as well as the perceptual ability of
users to understand the amount of information presented.
By combining the data formats, we can efficiently sample
subsets from one representation using information found
in the other. Such sampling schemes can provide more
physical meaning over schemes which use arbitrary random

1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2620975, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 2

sampling or selection based on information from only one
of the reference frames.

In this paper, we present our new combined Eulerian-
Lagrangian data representation and make the following
contributions:

• We introduce a new application of indexing-based
data structures that can combine the information
from both the Eulerian and Lagrangian reference
frames into a single format.

• We develop a set of accompanying analytical tools to
perform fast disk queries and other out-of-core oper-
ations using information from both representations
simultaneously.

• We extend this design to efficiently sample multi-
resolution subsets from large-scale data.

We demonstrate the effectiveness of our method through
case studies using real world large-scale datasets in fusion,
combustion, and cosmology and illustrate its numerous
advantages. Furthermore, we provide performance results
to give an estimate into the amount of improvement that
can be gained by adopting this design.

2 BACKGROUND

When it comes to managing large-scale data, nearly all
techniques choose to intelligently restructure or partition
the data to improve the efficiency of various analytical tasks.
Many methods have been shown to work well when dealing
with Eulerian or Lagrangian datasets separately (Section
2.1). However, due to fundamental differences between the
reference frames, using these established techniques to sup-
port operations involving both data types simultaneously
will result in certain drawbacks (Section 2.2).

2.1 Related Work
What little work exists on utilizing both the Eulerian and
Lagrangian reference frames simultaneously is often limited
to domain specific areas. Many large-scale scientific flow
simulations in areas such as fusion [1] or combustion [2] uti-
lize the popular particle-in-cell method [10] for computation
and to represent data in both reference frames. However, the
output from such simulations is nearly always in the form of
Eulerian volume data or Lagrangian particle data which are
processed and analyzed separately depending on the task at
hand. Other notable examples include a numerical modeling
framework for Tribology simulations [11], the deformation
and interaction of structures and fluids [12], [13], and ocean
current mixing [14]. Once again, these works focus on com-
bining the reference frames for domain specific modeling
and simulation purposes, rather than the postprocessing
analysis needed to fully study the rich datasets produced.
Aimed at computer graphics, Fan et al. [15] utilized a joint
method that combines Lagrangian-like grids with an Eule-
rian solver that can simulate deforming solids. Their work
utilizes both reference frames, but does not incorporate the
traditional particle/volume data paradigm as is the focus
of our work. Overall, a generalized framework focused
on combining each of the references frames to enhance
analysis and visualization of existing datasets has yet to be
thoroughly explored, especially in a large-scale setting.

When it comes to postprocessing frameworks designed
to support efficient analysis and visualization, nearly all
approaches focus on organizing either data type on its
own. The vast majority of techniques are in the form of
a hierarchical space partitioning data structure and have
been applied successfully for either case. The octree is one
popular form of a uniform hierarchical structure and can be
used to adaptively partition space for techniques such as fast
isosurface generation [16], particle collision detection [17],
volume rendering [18], and streamline construction [19].
Since each adaptive tree level is uniformly partitioned, the
octree works best (i.e. requires the least depth) when objects
are evenly distributed throughout the simulation domain.

On the other hand, many approaches favor a non-
uniform hierarchical partitioning. Yu et al. [20] utilize an
adaptive binary hierarchy of grid locations based on local
flow patterns for parallel pathline construction. Wächter
and Keller [21] utilize a bounding interval hierarchy (an
extension of the standard k-d tree) for the efficient organi-
zation of geometric primitives to improve ray tracing. More
recently, Garth and Joy [22] developed their cell tree ap-
proach, which is a further extension of the bounding interval
hierarchy approach, for fast cell searching in unstructured
Eulerian grids. Furthermore, Andrysco and Tricoche [23]
developed an efficient storage scheme for these tree-like
structures called matrix trees.

Some notable exceptions include the work done by
Ellsworth et al. [24] which use a space filling curve to
organize large-scale particle data and minimize disk seeks,
and Treib et al. [25] which use blocking and a GPU based
compression/decompression scheme for large-scale volume
visualization. Another common method is to use statistical
techniques to perform in situ sampling of the full resolution
data. Woodring et al. [26] apply such a technique to identify
and save subsets of large-scale particle data directly from
the simulation itself. In addition, Peterka et al. [27] choose
to organize the data temporally as well by utilizing 4D
blocks representing spatial and temporal neighborhoods for
parallel particle tracing. Lastly, Su et al. [28], [29] utilize
bitmap indices for efficient data sampling and correlation
analysis between variables. All of these approaches are
effective in handling either Eulerian or Lagrangian data, but
make no attempt to combine the two for enhanced analysis
and visualization as we do in this work.

The use of multi-resolution techniques for managing
large-scale visualizations is also heavily relied on in order
to alleviate both computational and perceptual scalabil-
ity concerns. In terms of computational complexity, data
reduction techniques are often employed to intelligently
collect subsets from the full dataset on disk. For example,
Fraedrich et al. [30] utilize an octree based level-of-detail
approach to handle large-scale cosmological data, and Hopf
et al. [31] use a hierarchical PCA based approach for particle
splatting. In terms of perceptual complexity, the amount of
information presented to the viewer must also be limited.
For example, Bürger et al. [32] employ an importance based
approach to selecting and presenting particles representa-
tive of specific flow features of interest. In this work, we
demonstrate how we can utilize our combined data rep-
resentations to quickly and intelligently gather new multi-
resolution subsets of large-scale datasets.

1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2620975, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 3

Fig. 1. An overview of a typical workflow using our design. Sections high-
lighted in gray represent components utilizing the techniques presented
in this paper.

2.2 Correlating Particle and Volume Data

While the aforementioned techniques have been be suc-
cessful in their respective areas, they do not focus directly
on tasks that require quickly building correlations between
the Eulerian and Lagrangian representations. Correlating
particles with unstructured grid data traditionally involves
matching data values according to their spatial position. In
other words, for any given particle, we need to determine
which grid point is closest in terms of Euclidean distance,
reducing this problem to a nearest neighbor search. As
described previously, the vast majority of tasks that require
solving the nearest neighbor problem (often for interpo-
lation purposes) utilize hierarchical space partitioning to
identify a local neighborhood and limit the number of data
points that need to be searched.

However, when it comes to correlating large-scale par-
ticle and volume data, these structures have a number
of drawbacks. First, trees will need to accommodate the
increasing size of simulation data by becoming deeper.
Depending on the type of tree that is used, this can increase
storage overheads since the spatial boundaries of certain
nodes may need to be stored on disk. Next, this type of
partitioning only limits the number of objects that need to
be searched (as opposed to eliminating the search entirely).
Lastly, there is the need for inter-leaf searching. It is not
uncommon for a particle and its associated grid point to be
found in separate portions of the spatial partitioning, and
therefore are part of separate leaves in the data structure.
Searching all potential candidates involves not only search-
ing the current partition, but all neighboring partitions as
well. The work presented in this paper focuses on develop-
ing a method without these limitations.

3 METHODS

Like many traditional techniques, our data representation
is based on a reorganization of raw simulation data into a
more computationally friendly format. The main difference
and advantage of this approach is that the particle data is
spatially organized in relation to the Eulerian simulation
grid itself allowing particle information to be “embedded”
into each grid location as a point cloud. Such a reorganiza-
tion allows for extremely fast access of both correlated data
types by exploiting data locality on disk and in memory.

Fig. 2. a) A 2D example of an unstructured Eulerian grid (black) and a
set of Lagrangian particles (red) as separate entities. b) The two data
types can be combined by representing the particles as a set of vectors
originating from its nearest Eulerian grid point.

3.1 Overview
A typical workflow using our design can be seen in Fig-
ure 1. Each scientific field of study has its own domain
specific workflow for producing simulation results. In the
end, the data is output separately as volume and particle
counterparts. Just like traditional reorganization techniques,
our current implementation utilizes a preprocessing step to
transform this raw simulation data into our desired format.
However, it is also possible to eliminate this step by organiz-
ing the data in situ during the simulation time and saving
it directly in the combined format. This is discussed later in
Section 3.2.5. Once in the desired format, the combined data
is accessed using an intelligent loader which can perform
out-of-core techniques to extract desired subsets from the
full dataset. This is then further processed using analysis
tools and rendered into a comprehensive visualization.

3.2 Data Structure
The joint data structure consists of a spatial reordering of the
particle information according to the Eulerian simulation
grid itself. As separate entities, the particle and grid data
have no predetermined correlation between one another.
However, we can associate each particle with a unique grid
location based on their Euclidean separation distance. As a
result, each grid point will have an associated set of particles
which can be represented as a point cloud. As shown in
Figure 2, this point cloud is described as a set of vectors
originating from the grid location and pointing towards the
particle position. Instead of simply assigning particles to its
associated grid point, using this vector based representation
has advantages when performing certain joint operations.
These are described in more detail in later sections.

3.2.1 Eulerian-Lagrangian Unit Cell
Such a representation results in a “unit cell” which contains
all of the Eulerian and Lagrangian information associated
with it. The Eulerian information includes the location of
the grid point, any scalar or vector values associated with
it, and a list of neighboring grid points. The Lagrangian in-
formation includes a list of vectors pointing to each particle
position as well as an ID and any scalar or vector values
associated with it. These unit cells are then used as discrete
building blocks to represent larger portions of the domain.

1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2620975, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 4

One can think of the Eulerian grid point as being at the
center of a cell whose bounds are represented via a Voronoi
decomposition. Any location within the cell boundary has
this particular grid point as its nearest neighbor. The shape
of the cell bounds depends on the number and distance of
neighboring grid points. Since the information from both
frames is already contained within each cell, we can use
out-of-core techniques to load and operate on individual or
groups of unit cells at a time. This is especially necessary
when the full dataset sizes are too large to fit in memory.

3.2.2 Storage on Disk

While both the grid and particle data have a 3D repre-
sentation, they must be stored in a 1D linear fashion on
standard hard drives. This is done by sorting information
such that all entities associated with a unit cell (e.g., the
associated particles) are grouped into contiguous chunks.
Since the number of entities per unit cell is not constant,
we use a set of helper files which contain start read indexes
and counts for locating the information corresponding to a
particular unit cell. This is similar to the “compressed sparse
row (CSR)” data format which is commonly used to store
large matrices. This allows us to organize the data on disk
so that all of the information corresponding to a particular
unit cell can be accessed quickly and independently.

We store the Eulerian grid (the xyz positions of each
grid point) in a linear fashion using the same ordering as
produced by the simulation. Since there are exactly three
values for each grid point, we can easily determine where
in the file to seek to for the associated information given the
grid point index. We also store a list of local neighbors to
complete the mesh-like representation of the Eulerian grid.
We sort each neighboring index by grouping together all the
neighbors for each grid location, and ordering the groups
according to the original grid index. Since the number
of neighbors per grid location might not be constant, we
include an additional helper file as described earlier.

Next, we store the time-varying data on a per timestep
basis (a separate group of files representing different data
variables for every available timestep). If the simulation pro-
duces particle and volume data at different time resolutions,
then this simply results in a subset of timesteps on disk
which are missing corresponding Eulerian or Lagrangian
variables. More details are discussed in Section 3.3.3. We
save each Eulerian variable in a linear manner. Each variable
is placed in its own file, and since the number of values per
grid point is constant per variable, no helper file is needed.

Lastly, we store the Lagrangian particle information.
Since each unit cell consists of a (non-constant) number
of particles, we store the particle information in a manner
similar to the local neighbor lists. We reorder the particle
data by grouping all particles associated with a unit cell
together, and order the groups according to the Eulerian
grid point index. The particle positions are saved relative
to the position of its associated grid point in the vector
based format described earlier. The particle variables (ID’s,
scalar values, etc.) are saved in the same order as the particle
positions. Since the number of particles per unit cell is not
constant, we need one additional helper file containing a
start read location and particle count for each unit cell.

Fig. 3. A representation of the joint data structure as files on disk. Each
dark gray block represents a separate file.

The reason we do not interleave all the data associated
with our unit cell (and save information as separate files)
is to minimize disk seeks and the amount of unnecessary
information placed in main memory when fetching data
blocks from disk. In many instances, users will only be
studying a few variables at a time allowing the system
to easily ignore all other variables and those respective
files. An overview of this file representation can be seen
in Figure 3. This data representation allows the system to
quickly access all of the Eulerian and Lagrangian informa-
tion associated with a particular unit cell of interest in a time
that is independent of the size of the dataset. The ability to
operate on all of the information contained in each unit cell
separately is crucial for certain out-of-core operations.

3.2.3 Storage Overhead
Representing simulation data in this format on disk does
incur an additional storage overhead. This is due to the
helper files which allow the system to immediately locate
the corresponding (neighbor or particle) information for a
particular unit cell. Since all other files are simply a reorder-
ing of the raw simulation data values, they do not take up
any additional space. Recall that each helper file consists
of a list of start read indexes as well as a list of counts. We
include one helper file for the Eulerian grid structure to help
index the neighbor lists and additional helper files (one per
timestep) to help index the particle data. The total amount
of information contained in each helper file is two integer
values times the total number of grid points (unit cells). If
there are n grid points and tp particle timesteps in total, then
the additional storage required scales linearly with each:

2n(tp + 1) integer values

In comparison, a hierarchical space partitioning structure
would also include an additional storage overhead. For
example, an octree needs to save information pointing to
the objects (grid points and particles) contained in the space
partition represented by each of its leaf nodes. If we assume
a full octree with depth, d ≥ 0, then the total number of
nodes becomes (8d+1 − 1)/7 with 8d nodes as leaves. Since
a full octree is a structured data structure (akin to regular

1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2620975, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 5

Fig. 4. A representation of the joint data structure once in memory.

grid indexing) we do not need to store the addresses of
children nodes in our file since it can be computed on the
fly. Next, we can reorganize and linearly group together the
raw simulation data according to the tree leaf nodes. Similar
to the helper files used in our implementation, each leaf
only needs to store a start read location and count once per
timestep for the Lagrangian data. However, we need two
helpers files for the Eulerian data, one to index the grid point
neighbor list and one to index which grid points fall into
each leaf node. As a result the additional storage required
then becomes:

2 ∗ 8d(tp + 2) integer values

Assuming a generally even distribution of data points
in the domain we can then choose the depth of the oc-
tree so that each leaf node contains approximately one
grid point. In this case, 8d ∼ n and we end up with a
storage overhead that scales similarly for both the octree
and our technique. However, an unbalanced octree or a
non-uniform partitioning technique could result in an even
higher storage overhead since it must contain additional
information specifying the exact shape of the hierarchical
domain decomposition.

3.2.4 Structure in Memory

Although information is stored as separate files on disk,
once loaded into memory, the data for each unit cell is stored
more closely for easy access. Figure 4 shows an overview
of this structure for a single timestep. A block of memory
is used to store basic unit cell information, such as the
position of the grid point and any Eulerian variables, as well
as the number of associated particles and neighboring grid
points. The helper indexes are now replaced by pointers to
a particle array containing their position vectors and any
Lagrangian variables, and an array of neighboring grid in-
dexes. Each unit cell memory block that is loaded from disk
is grouped into an array which represents larger portions of
the overall domain.

Special care must be taken when reading the neighbor-
ing grid indexes into memory. Since this method supports
conditional unit cell queries (Section 3.3.1), it is possible that
a unit cell does not meet the requirements of the query and
is never loaded into memory. This results in a mismatch
between the indexes contained in the list of local neighbors
(on disk) and the index of those neighbors in the array as (in

memory). As a result, we need to generate and store a map
between the grid index of the neighboring cell that is read
and the correct index of that cell in the array in memory.
This is constructed concurrently as data is read from disk
according to the conditional query and an example can be
seen later in Algorithm 1. Our technique references this map
when it needs to locate neighboring unit cells.

3.2.5 Preprocessing Costs

Like many other structural implementations, the one pre-
sented in this paper uses a preprocessing step to reorder raw
data into the format described in the previous sections. The
main cost and function of this preprocessing step requires
determining which particles are associated with a particular
Eulerian grid point and then sorting them according to the
corresponding unit cell ID. This is done via a nearest neigh-
bor search which minimizes the Euclidean distance between
particles and grid points. To minimize the computational
cost of the nearest neighbor search, we spatially partition
the domain according to a regular grid, populating each
region as data is read from disk. This reduces the number
of elements that need to be searched. Note that the nearest
neighbor search step is only necessary when working with
irregular Eulerian meshes. If it uses a regular grid, then
the partitioning step automatically assigns each particle to a
grid point. Once each entity is assigned to a unit cell, they
are sorted by ID, placing associated entities into contiguous
chunks. Counts of the number of entities per unit cell
are maintained during the sorting process to generate the
helper files. Performance tests of each preprocessing step is
discussed later in Section 4.4.

While the preprocessing costs are only a small one time
cost, it is possible to eliminate them by directly saving data
from a simulation into this format. This can be done with
very little modification to the simulation itself because the
approach used here orders information based on the already
defined Eulerian simulation grid. In a simulation using a
distributed domain decomposition (which describes a vast
majority of today’s scientific simulations), each processing
node can independently organize particles into vector based
point clouds and dump its own image of the domain space
into our desired format. In fact, simulations that utilize the
particle-in-cell method [10] in their computation already
have some form of particle to grid association built in. The
only additional inter-node communication costs involved
would be a “gather” of the number of particles associated
with each grid point in order to construct the helper files
described earlier. Future work is still necessary to quantify
the computational and memory costs imposed on moving
the preprocessing cost in situ.

3.3 Data Operations

Next, we describe some of the fundamental data operations
provided by our design that can be utilized by analytical
tasks that use both particle and volume representations
simultaneously. One of the main driving motivations behind
this work is the ability to operate on unit cells individually,
allowing all the following tasks to be done in an out-of-core
manner with large-scale datasets.

1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2620975, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 6

3.3.1 Conditional Unit Cell Queries

Having immediate access to corresponding particle or vol-
ume data is the primary application of this data structure.
Whether one is working in either frame, the unit cell based
format allows for a quick and easy retrieval of data in
the counterpart representation. For example, a user could
identify a feature of interest in the volume data, which is
represented as a set of Eulerian grid points. We can then
use the indexes of the grid points as well as the helper file
to query the associated particle data for that feature from
disk. This will load only the particles which are spatially
contained within the feature of interest allowing users to
investigate additional properties using Lagrangian data val-
ues.

Another useful task is the ability to query both Eulerian
and Lagrangian information based on variables found in
either representation directly from disk. Using our method,
we can choose which unit cells to load into memory based
on any number of raw or derived values. For example, we
could load only unit cells whose Eulerian values lie within
a certain range. This is done by iterating over every unit
cell and reading only the Eulerian data values in question
to test against the user defined criteria. If the criteria is
met, the rest of the information associated with the unit
cell (its position, Lagrangian information, etc.) is then also
loaded into memory. Note that this is possible because all
of the information associated with a specific unit cell can
be quickly located. If the criteria is not met, then the cell
is skipped via a seek operation to the location of the next
unit cell in our files. An example of such a query is given
as pseudocode in Algorithm 1. Recall that we also need to
keep an updated map of correct neighboring indexes since
some unit cells may not be loaded into memory as described
previously in Section 3.2.4.

We can also take the reverse approach and query unit
cells based on Lagrangian information. In this case, we read
Lagrangian variables from all of the particles associated
with a particular unit cell and use the distribution of values
in the testing criteria. Note that since the system maintains
references between particles loaded into memory and their
corresponding unit cells, this type of query can also be
performed quickly. Methodically extracting subsets from the
full dataset is the basis behind feature extraction in many
scientific fields. Our design extends this into both reference
frames by being able to efficiently isolate Eulerian features
using Lagrangian information and vice versa.

3.3.2 Transforming Between Reference Frames

The next task involves correlating Lagrangian and Eulerian
data values with one another and the ability to map in-
formation into its counterpart reference frame. Since both
data types are already organized into unit cells, this con-
version can be done extremely quickly. For example, we
can map Lagrangian variables onto the Eulerian grid points
by averaging the information of all of the particles within
each unit cell. Furthermore, we can use the distance of
the particle to the grid point as a weighting factor for
improved accuracy. Since each particle’s position is already
represented as a vector, its distance to the associated grid
point can be quickly computed by taking the magnitude,

Algorithm 1 Eulerian Conditional Query Example
1: procedure CONDITIONAL UNIT CELL LOAD
2: num skipped = 0
3: for each unit cell with index i do
4: s = readEulerian(i) . read Eulerian value
5: if conditional(s) = true then . meets condition
6: readGridPosition(i)
7: r, c = readGridHelper(i) . (read start, count)
8: readNeighborList(r, c)
9: r′, c′ = readParticleHelper(i)

10: readParticleData(r′, c′)
11: update map(i, num skipped) . build map
12: else . fails condition
13: update map(i, “not loaded”)
14: num skipped += 1
15: end if
16: end for
17: end procedure

allowing the system to weigh closer particles more strongly.
If there are N particles in the unit cell, each represented as
a vector vi with data value di, then the resulting mapped
value can then be computed as:

N∑
i=1

widi where wi =
1/|vi|∑N
i=1 1/|vi|

Some applications of this transformation include the ability
to color isosurfaces (represented in the Eulerian reference
frame) using variables found in the Lagrangian particle
data or to quickly analyze differences between particle and
volume variables at common locations in the domain.

Once again, we can take the reverse of this approach
and map Eulerian data values onto Lagrangian particles.
Traditionally, this is done by searching for and then in-
terpolating in between nearby grid points. Our joint data
structure accelerates this procedure since, for each particle,
the associated (nearest) grid point and all of its neighbors are
already determined and can be quickly fetched from disk if
not already in memory. While any number of interpolation
schemes can be easily used with this design, we choose to
interpolate using the associated grid point and its neighbors
that lie in the same direction as the particle of interest rela-
tive to the unit cell center. In other words, if v is the vector
pointing to the particle location and uj is the vector pointing
to a neighboring grid point, we only use that neighbor as a
reference for interpolation if v · ui > 0. Overall, if d is the
Eulerian data value of the associated grid point and there
are M neighbors that meet the previous criteria with data
value dj , then the interpolated value can be computed as:

w0d+

M∑
j=1

wjdj where wj =
1/|uj − v|

1/|v|+
∑M

j=1 1/|uj − v|
, u0 = 0

Note that if no particle data is present and the Eulerian grid
contains a flow field, one could apply this scheme to particle
advection/pathline generation as long as the unit cell that
each particle is associated with is continually updated as
it travels through the domain. Furthermore, the material

1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2620975, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 7

Fig. 5. Particles are drawn in red while grid points are drawn in black.
Numbers indicate the search priority of nearby grid locations. Left) Use
the location of the particle in the previous timestep (blue). We first
search the grid location that contained the particle in the past. Since the
particle is not found, the search continues to all neighbors. Right) We
use the location of the particle in the previous two timesteps (blue). We
can prioritize searching neighboring grid locations along the particle’s
direction of travel.

derivative could be used to map the evolution of Eulerian
variables along the path of this particle.

3.3.3 Interpolating Inconsistent Temporal Resolutions

It is possible for a simulation to produce Eulerian and
Lagrangian data at different temporal resolutions. When
this occurs, some timesteps are missing one of the two
representations. However, as we load multiple timesteps
into memory, we can use interpolation techniques to fill in
the missing components. In the case where particle data is
dumped more frequently than grid data (the more common
case), Eulerian variables for each unit cell are interpolated in
the missing temporal regions. We treat each unit cell sepa-
rately and use linear interpolation with a step size matching
the number of additional particle timesteps. While we use a
linear interpolation scheme in our current implementation,
higher order interpolation is always an option as well.

A similar technique can be used when grid data is
dumped more frequently than particle data (the less com-
mon case). Once again, the positions of the particles as well
as any Lagrangian variables are treated as a trajectory and
interpolated linearly in the missing temporal regions using
a step size that matches the number of additional Eulerian
timesteps. Special care must be taken in this circumstance
because the particles can switch between different associ-
ated unit cells over time. It is crucial for the system to have
knowledge over which unit cells contain which particles
at every timestep, even those that are interpolated. As
a result, we use intelligent local neighborhood searching
when constructing trajectories from the particle data and
can quickly interpolate and assign new particle positions
to an associated unit cell if necessary. This is described in
more detail in the next section. In the end, we can use these
interpolation methods to perform joint analyses tasks at a
temporal resolution matching the higher output frequency
of the two representations.

3.3.4 Constructing Trajectories from Particles

While not entirely a joint operation that requires both data
representations, constructing time-varying trajectories from
the particle data is another important task. Our joint data
structure can help to reduce the computation necessary to
form these structures. Since scientific simulations run on a
large-scale distributed system, raw particle data is nearly
always dumped in an arbitrary ordering that differs across
timesteps. This forces postprocessing systems to rely on a
particle ID to match particles temporally into a coherent
trajectory. Searching the full particle list for a particular ID
can be very time consuming. One solution is to sort the
particle data for every timestep so that a particle’s ID is
implied by its index. Not only is this an extremely expensive
preprocessing task, it also does not have the advantage of
ordering particles based on their location in the domain.

In our design, the particle data is already organized
according to the Eulerian simulation grid. If we assume
that the change in position of each particle is small between
subsequent timesteps, then we can reduce the search time by
looking first in a small neighborhood around the previous
location of the particle. This is done by first searching the
original unit cell for a particle with the same ID. If the
particle cannot be located, the search continues to the neigh-
boring unit cells. This continues in a breadth-first manner
until the particle is found. An example of such a search can
be seen in the left side of Figure 5. The unit cell (a hexagon
in this case) which contained the previous location of the
particle is searched first (as indicated with a “1”). Since the
particle is not found, the search continues to all neighbors
(as indicated with a “2”). In this case, the particle is found.

We can also take this one step further by considering
information from the previous two timesteps. This allows us
to narrow our search based on not only the prior position of
the particle, but its direction of travel as well. If we make the
assumption that the trajectory of a particle does not change
very rapidly, we can prioritize our search in neighboring
grid cells along the direction of travel. In other words, if
we represent the past direction of travel of the particle and
the location of neighboring unit cells as vectors, we can
take the dot product and search cells that return a positive
result first. Once again, if the new particle is not found,
the search continues outwards in a breadth-first manner.
An example of this “flow-aware” breadth-first search can
be seen in the right side of Figure 5. The unit cell which
contained the previous location of the particle is searched
first (as indicated with a “1”). Since the particle is not found,
the search continues to the three neighbors that lie along
the direction of travel (as indicated with a “2”). In this case
the particle is found. If the particle were still not found,
the remaining neighbors will be searched next (as indicated
with a “3”), followed by a repeat of this procedure for unit
cells two neighboring steps away, etc.

As previously mentioned, when interpolating particles
between two known timesteps, we can use these local
neighborhoods to accelerate identifying which unit cells the
interpolated points are associated with. More specifically,
all the unit cells that were searched (either in the breadth-
first or the flow-aware approach) when locating the particle
in the next timestep become candidates for associating an

1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2620975, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 8

interpolation position with a unit cell. Once found (via a
nearest neighbor search) the new interpolated particle as
well as its interpolated Lagrangian variables can be stored
in our unit cell based format and operated on as usual.

3.4 Multi-resolution Sampling
Scientists are also interested in exploring the entire do-
main. However, this is not always possible with large-
scale datasets. As a result, we extend our design to extract
multi-resolution representative subsets from the full dataset
for users to explore. While generating a random sampling
is always an available technique, our method opens up
the use of more intelligent sampling schemes. We focus
on large-scale particle data where occlusion can become
a big problem and because randomly selecting particles
can potentially result in an uneven sampling from different
portions of the domain.

Since our joint data structure organizes particle data
according to the Eulerian simulation grid, we can easily con-
trol the spatial sampling of particles. Choosing a constant
percentage of all of the particles in each unit cell will ensure
that we retain the relative particle densities from each part
of the simulation domain. For example, we can load exactly
half of the particles per unit cell. Adjusting this ratio will
allow the system to generate multi-resolution subsets of the
particle data. Since our joint data structure can treat unit
cells independently from one another, the desired subset of
data can be extracted directly from disk.

On the other hand, we can also purposefully sample
more particles in interesting portions of the domain. Instead
of sampling a constant ratio of particles from each unit
cell, we can evenly sample the same number of particles.
This will load high densities of particles where the Eulerian
grid density is higher. In nearly all cases, unstructured
simulation grids are specifically designed so that more grid
points are placed in regions of interest (e.g., near an airfoil
wing in a flow simulation) to give higher detail in those
locations. For example, we can load exactly 5 particles
from each unit cell resulting in more data retrieved from
important parts of the domain. Choosing more or fewer
particles per unit cell will generate this “biased” form of
a multi-resolution sampling. Note that if a unit cell contains
fewer than the desired number of particles then we simply
load all available particles. Other techniques would need to
use an intermediate mechanism to correlate the two frames
before being able to generate such a sampling.

4 RESULTS

Next, we apply these techniques to a number of real world
large-scale datasets in the fields of fusion research, com-
bustion, and cosmology. We choose these datasets not only
because they contain both an Eulerian and Lagrangian rep-
resentation, but because they come from entirely different
domains and each exemplifies different ways our system
can be used to operate with various joint datasets. An
overview of the sizes of the datasets used for testing can be
seen in Table 1. We chose both structured and unstructured
grids with varying sizes to show that our design is effective
in a variety of cases. Lastly, we provide performance results
for each of the example tasks applied.

TABLE 1
Overview of the dataset sizes used for testing.

Fusion Combustion Cosmology
Grid Type unstructured structured unstructured
Num. Grid Points 3.5M 1.3B 7.9K
Num. Particles 40K 40M 2M

4.1 Fusion Dataset
The first dataset we use comes from XGC1, a large-scale fu-
sion simulation developed by scientists at Princeton Plasma
Physics Lab [1]. The simulation run used emulates the Alca-
tor C-Mod fusion device located at the MIT Plasma Science
and Fusion Center. Studying the highly-turbulent systems
that arise from the magnetic confinement of plasma can help
lead to the development of practical fusion energy. This par-
ticular dataset includes an unstructured Eulerian grid which
represents the torus-shaped fusion device and includes a
number of field measurements, such as electromagnetic field
strengths and relative plasma densities. In addition, the
simulation outputs a smaller subset of Lagrangian particles
representing the physical ions and electrons that make up
the plasma. Since the dataset has many more grid points
than particles, each unit cell contains anywhere from 0 to 3
particles depending on its location in the domain.

Being able to correlate the macroscopic field measure-
ments of the Eulerian data with the individualized proper-
ties of plasma particles becomes useful in studying this com-
plex system. We can use the conditional queries provided by
our method to quickly load particles according to specific
Eulerian variables directly from disk. An example of this
can be seen in Figure 6. In the Eulerian reference frame, we
look at the density of the plasma which is noticeably higher
in the core of the fusion device. In the Lagrangian reference
frame we look at the Larmor radius of each particle, which
represents the gyrokinetic motion of a magnetically confined
object. We can choose to only load unit cells that fall within
a desired range of plasma density directly from disk. As a
result, any particles corresponding to the complex shapes
represented by these unit cells are also loaded. We are
then free to analyze this particular data subset (volume
data, particle data, or both). For example, we can learn
that the average Larmor radius of particles corresponding to
the higher density plasma is significantly larger than those
corresponding to the lower density regions.

Another method we can use to directly correlate the two
reference frames is to map the Eulerian data values onto
the physical particles themselves. We can use the mapping
schemes provided by this method to quickly assign an
Eulerian data value to each particle using its associated grid
point and neighbors. Once both variables are represented
in the same reference frame, correlations can then be inves-
tigated in greater detail. Using the same variables as the
previous example, we can project the plasma density onto
each individual particle and see how it correlates with the
Larmor radius. As shown in Figure 7, we can see a clear
correlation between these two variables now that they are
both represented in the Lagrangian reference frame. Our
system has the advantage of being able to make such a
projection very quickly. In the case where the number of

1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2620975, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 9

Fig. 6. a) No conditional query used. The Eulerian grid data is drawn on representative toroidal slices and colored according to the plasma density.
The particles are drawn as circular sprites and colored according their Larmor radius. b) Conditionally querying unit cells that exhibit a low plasma
density. c) Conditionally querying unit cells that exhibit a high plasma density.

Fig. 7. Upper) Mapping the Eulerian plasma density variable onto each
particle. Lower) A scatter plot showing the correlation between the Lar-
mor radius and plasma density. Each point on the scatter plot represents
an individual particle.

particles exceeds the number of grid points, such a projec-
tion would preferably be done in reverse with both variables
represented in the Eulerian reference frame.

4.2 Combustion Dataset

The second dataset we use comes from S3D, a peta-scale
combustion simulation developed by scientists at Sandia
National Labs [2]. This particular simulation run depicts
a 3D highly-turbulent lifted ethylene jet flame. Studying
such systems can lead to a better understanding of processes
like autoignition and becomes essential in developing next

generation engines of high efficiency. This dataset includes a
large structured Eulerian grid which records variables such
as the mixture ratio of fuel and oxidizer. In addition, the
simulation produces a number of massless tracer particles
which measure the relative ratios of different chemicals
present in the flame as well as other factors like temper-
ature. We choose this combustion simulation to show the
advantages of our method when dealing with structured
(regular grid) volume data as well. In this case, we do not
need to store grid locations or neighbor information since
their position in the 3D domain is implied by their index.
However, we still organize all Lagrangian information into
the unit cell based representation as previously described.
This large dataset exemplifies the need to perform queries
of data subsets since each timestep can contain much more
information than the amount of available memory.

Once again, correlating macroscopic field measurements
with the individualized properties of the tracer particles can
reveal interesting patterns. For example, we can identify
which portions of the jet are simply mixing versus which are
mixing and burning by correlating mixture ratio (Eulerian)
with the temperature of the flame (Lagrangian). Figure 8
shows an example of querying unit cells that correspond to
an equal mixture of fuel and oxidizer. This allows us to load
and display particles corresponding to the complex struc-
tures formed when these two compounds mix. Coloring the
particles according to their temperature distinguishes which
portions of the jet are experiencing mixing and burning (red)
from those that are just mixing (blue).

Next, we can study the movement of these tracer par-
ticles by constructing time-varying trajectories from the
data. Once a set of particles corresponding to a particular
Eulerian feature of interest is extracted, we can use either the
simple breadth-first search method or the flow-aware search
method to accelerate the time it takes to locate particles with
the same ID’s in subsequent timesteps. Throughout this

1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2620975, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 10

Fig. 8. a) A 2D slice showing the Eulerian mixture ratio variable. Fuel is injected from the bottom of the image. b) Conditionally querying unit cells
corresponding to a specific mixture ratio between fuel and oxidizer. The high temperature regions show where burning is occuring. c/d) Zoomed
views show the complex structures from which the particles are queried.

Fig. 9. An angled view of a set of Lagrangian trajectories drawn near
a 2D Eulerian slice. This particular group of particles originated from a
single Eulerian feature of interest.

process the particle data corresponding only to the selected
group of particles is retrieved from disk. Figure 9 shows an
example of such a result over the course of 800 timesteps
and shows evolution of the original Eulerian feature used to
query the particles. More detail comparing the performance
of the two search methods is discussed in later sections.

4.3 Cosmology Dataset

The third example we use is a cosmology dataset that comes
from the SLAC National Accelerator Laboratory’s Dark Sky
Simulation early data release [33]. Such simulations are es-
sential in understanding the evolution of matter throughout
the history of the universe. We choose this dataset to show
how our design also applies to datasets that are not split into
Eulerian and Lagrangian reference frames in the traditional
sense. This large-scale N-body simulation computes sets
of coherent structures called halos to represent groups of
gravitationally bound bodies. These halos each have a 3D
position associated with them as well as other derived
variables. We treat these halos as the Eulerian grid locations
when applying our method. In addition, this dataset is dif-

ferent from the previous two since the number of particles
far exceeds the number of grid points.

We use this dataset to test the multi-resolution sampling
schemes as the many particles can cause visual problems
with occlusion. Furthermore, larger versions such a dataset
can cause performance limitations and forces analysis tools
to operate on representative data subsets. Each of the two
sampling schemes discussed previously can be seen in
Figure 10. In the first case, we use the unbiased sampling
scheme to extract an even percentage of particles from
every unit cell directly while loading the data from disk.
This is done to maintain the relative particle densities in
different parts of the domain. In the second case, we use
the biased sampling scheme to extract a constant number of
particles from each unit cell (e.g., exactly 50 particles from
each unit cell). This will sample more particles from regions
containing an increased number of unit cells (halos) and
more effectively highlights densely packed clusters.

4.4 Performance Tests
We provide timing results for each of the preprocessing
steps for each test dataset as well as timing results for the
case studies shown in the previous sections. We compare
our joint techniques against a full octree (uniform partition-
ing) and a k-d tree (non-uniform partitioning). For each test,
all of the data initially started entirely on disk and we load
only the necessary unit cells or tree leaves to generate the
result. Presented times are the result of averaging several
trials and measures were taken each time to clear the mem-
ory file cache of any residual data from prior test runs. Tests
were done on a desktop computer using a standard 7200
rpm HDD and a 3.2 GHz Intel Core i7-3930K processor.

We choose the octree and k-d tree as a comparison
because they are popular techniques that have been used
successfully for particle and field data. These techniques
can be arranged such that their storage space on disk is

1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2620975, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 11

Fig. 10. Comparing two different multi-resolution sampling schemes. The full set of particles is shown on the left. The top shows the unbiased
sampling scheme where the relative particle densities are maintained throughout the domain. The bottom shows the biased sampling scheme
which samples more particles in regions that contain more grid points (halos).

very similar to that of our joint representation, giving a fair
comparison. We choose a full octree (similar to regular grid
indexing) and choose a depth such there is approximately
one Eulerian grid point per leaf node. This full uniform
partitioning removes the need to explicitly store the bound-
aries of each partition, making the storage overhead nearly
identical to our joint representation. For the k-d tree, one
standard method is to use the data entities themselves to
mark the splitting planes throughout the domain alternating
in a repeated xyz fashion. Since the boundaries are encoded
into the data values themselves, this technique also does not
require explicitly storing the boundaries of each partition
making it also nearly identical to our joint representation.

While other, possibly more complex, techniques may
have slight improvements over an octree or k-d tree (often at
the expense of additional storage requirements) we feel that
these are a good baseline to compare against in order to gain
an estimate into the types of performance gains our method
can achieve. In theory, one could always utilize more storage
space to reduce queries and search times, but since most
large-scale simulations are I/O bound, storage overheads
must be kept to a minimum (as provided by the full octree,
k-d tree, and our joint representation).

4.4.1 Preprocessing

The time it takes to compute each of the preprocessing
steps to generate our joint representation (as described in
Section 3.2.5) can be found in Table 2. The table also provides
the preprocessing times to generate the octree and k-d tree
as a comparison. These results represent the time it takes to
preprocess one timestep and do not reflect file load or save

times since all data must always be loaded into memory to
perform the preprocessing for each of the techniques.

The results show that preprocessing our joint represen-
tation takes longer than preprocessing an octree or k-d tree
as one would expect. This is because our representation
already precomputes and encodes which particles are as-
sociated with each grid point, rather than just partitioning
nearby entities into groups. The preprocessing time also
depends on the number of grid points and particles. For ex-
ample, the sorting/indexing step for the fusion case is very
fast since this only needs to be done on the small number of
particles. The combustion dataset does not require a nearest
neighbor search since it lies on a regular grid, but takes the
longest out of the three since it contains many entities than
the other datasets.

The octree preprocessing time is on par with the spatial
partitioning step since they perform very similar functions.
The k-d tree however, takes longer than the octree since it
must perform spatial sorting of the entities first to ensure
a balanced split between the non-uniform partitions. While
the joint representation incurs a longer preprocessing cost,
this one time cost is overshadowed by the other advantages
of the technique as well as the performance boost of numer-
ous future tasks a scientist might perform when analyzing
the data as described in the next section.

4.4.2 Case Studies
The performance tests comparing data structure in generat-
ing each of the case study examples are found in Table 3. The
column on the right shows the speedup the joint representa-
tion provides over the k-d and octree respectively. Note that
these results do include disk load times, since the amount of

1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2620975, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 12

TABLE 2
Preprocessing timing results.

Step Fusion Combustion Cosmology
Spatial Partitioning 14.4 s 105.4 s 9.7 s
Nearest Neighbor Search 26.8 s n/a 3.4 s
Sorting/Indexing 0.2 s 116.9 s 5.9 s
(Total) 41.4 s 222.3 s 19.0 s
Octree 15.2 s 116.4 s 10.2s
k-d Tree 21.3s 128.5 s 13.3s

data that needs to be loaded into memory varies depending
on the case study and on the technique used. Overall, we
can see that the octree and k-d tree perform similarly to one
another since the data entities tend to be fairly uniformly
distributed throughout their respective domains. The k-d
tree performs slightly worse since its non-uniform nature
incurs some extra computation in determining neighboring
leaf nodes. Note that although the fusion dataset represents
a torus shape, the data itself is stored in an “unwrapped
torus” domain taking on a cylindrical shape (rather than a
toroidal shape) and thus has very little empty space in a
Cartesian bounding box.

TABLE 3
Timing results for the case studies.

Test k-d Octree Joint Speedup
Cond. Cell Query (fig. 6b) 14.9 s 14.5 s 3.7 s 4.02/3.92
Cond. Cell Query (fig. 6c) 13.7 s 13.4 s 3.1 s 4.42/4.32
Euler. to Lagr. map (fig. 7) 19.7 s 18.7 s 5.2 s 3.79/3.60
Cond. Cell Query (fig. 8b) 220.3 s 211.1 s 202.2 s 1.09/1.04
20% Unbias. Samp. (fig. 10) 0.6 s 0.6 s 0.6 s 1.00/1.00
10% Unbias. Samp. (fig. 10) 0.4 s 0.4 s 0.4 s 1.00/1.00
20% Bias. Samp. (fig. 10) 4.5 s 4.2 s 0.8 s 5.63/5.25
10% Bias. Samp. (fig. 10) 4.4 s 4.0 s 0.7 s 6.29/5.71

Beginning with the three fusion examples (Figures 6-7), it
is evident that our joint structure significantly outperforms
the other data structures. This is because although the
octree and k-d based system have a significantly reduced
search area, they must still perform the extra computation
necessary to correlate particles to Eulerian grid points. This
is necessary to determine which particles to keep in memory
when performing a conditional query or to determine which
grid points to use for interpolation. Furthermore, neighbor-
ing leaf nodes must be loaded into memory and searched
as well because it is possible for a particle and its associated
grid point to be found in different leaves of the tree. This
computation has a large overhead in unstructured grids like
the one used to represent this fusion simulation.

Furthermore, Figure 11 shows timing results of per-
forming a typical conditional query in the fusion data as
a function of the number of grid points that meet the
condition (and as a result are loaded into memory along
with their corresponding particles). We can see that since the
joint data structure can operate on unit cells independently
from one another it scales linearly with size. However,
the octree and k-d tree must do additional computation
associating particles with grid points and requires loading
extra information into memory that may become eventually

discarded (e.g., loading a particle only to discover later that
it is associated with a grid point that does not meet the
condition). Since leaf nodes cannot be treated independently
from one another, the complexity of the task increases as we
need to load larger subsets of the data into memory resulting
in a non-linear scaling.

Fig. 11. A graph showing the timing results to generate the conditional
queries in the fusion dataset examples as a function of the number of
grid points that meet the condition.

Next, the timing results to load and generate the fusion
conditional query (Figure 8) shows that there is not a sig-
nificant improvement over the k-d tree or octree. This is
because the extra computation (correlating particles to a grid
location in the limited search area) becomes much simpler
when working with a structured grid. In addition, we can
compare the simple BFS trajectory construction method to
the flow-aware BFS method as shown in Table 4. In all cases,
the flow-aware method outperforms the simple one because
we can save several disk reads by predicting which unit cells
or leaf nodes likely contain our particles of interest.

TABLE 4
Timing results for trajectory generation (fig. 9).

Data Structure Simple BFS Flow-aware BFS Speedup
k-d Tree 5.2 s 2.0 s 2.60
Octree 5.0 s 1.9 s 2.63
Joint 4.9 s 1.8 s 2.72

Lastly, we compare the timing results to load and gen-
erate the examples provided using the cosmology dataset
(Figure 10). We can emulate the unbiased sampling in the
k-d tree and octree by simply loading a percentage of the
particles in each leaf node (rather than each unit cell). This
would also retain the relative particle densities throughout
the domain. Since the number of leaf nodes and unit cells is
similar, the load times between the two techniques are also
similar. However, in order to recreate the biased sampling
scheme using the octree, particles must be associated with
a particular grid point first. This results in a much higher
computational cost and a longer load time.

Furthermore, Figure 12 shows timing results of this
biased sampling as a function of the percentage of data
loaded. The joint data structure once again scales linearly
since unit cells can be treated independently. More particles
must be loaded from disk when generating a larger biased

1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2620975, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 13

sampling. The timing results for the k-d tree and octree
remain generally constant regardless of data subset size
since nearly all particles must be loaded into memory and
associated with a grid point before the sampling can be
generated. Note that 100% biased sampling is a special case
where all the data is loaded into memory and there is no
longer a need to associate particle and grid positions making
the timing results between the two techniques equivalent.

Fig. 12. A graph showing the timing results to generate the biased multi-
resolution samplings in the cosmology dataset examples as a function
of the percentage of data loaded.

Overall, our method performs either equal to or better
than the hierarchical space partitionings for the joint par-
ticle/volume examples provided. It is clear that the major
benefit of this design is for use in unstructured grids, where
correlating particles with grid data becomes inherently dif-
ficult. As simulation sizes continue to grow, the use of
unstructured grids will only increase since they can capture
fine granularities in specific domain locations while sparsely
sampling others.

5 DISCUSSION

The above results demonstrate the effectiveness of this
method when performing analysis tasks that require both
the Eulerian and Lagrangian aspects of a particular dataset.
The unit cell based format eliminates the need for our
system to associate particles with a particular grid point
making the retrieval of information from both reference
frames fast and efficient. Moreover, the ability to operate on
each unit cell individually makes this method applicable to
large-scale datasets since we can quickly load desired data
subsets into memory. There are also a number of ways this
framework can be modified to broaden its applicability.

As an alternative to using the techniques from this
paper in an out-of-core manner, we can analyze large-scale
datasets by using a distributed system with a sufficient
number of compute nodes. Using our design, groups of unit
cells can be distributed ensuring that all necessary Eulerian
and Lagrangian information is locally available.The system
can then process unit cells in parallel, speeding up querying,
sampling, and performing other joint operations on the data.

It is important to mention that this data structure is
not designed to solve the popular “cell location” problem.
In other words, the problem asks to find the associated
unstructured grid point given an arbitrary location in the 3D

domain. Instead, this method focuses on the quick retrieval
and processing of both data representations by removing
the need to perform the cell location problem for the particle
data. However, other analysis and visualization techniques,
such as volume rendering, need to solve the cell location
problem in a more general sense in order to handle large-
scale data. As a result, we can build schemes that solve this
problem on top of this method if necessary. For example, one
could use the hierarchical space partitioning to organize the
unit cells as they are loaded into memory.

Another limitation comes from the vector based ap-
proach to represent Lagrangian particle locations. Since each
particle is represented relative to its associated grid point,
finding the global 3D location of a particle requires the grid’s
location to be in memory as well. This is generally not an
issue since this data structure is designed specifically for
operations that utilize both reference frames, and therefore,
any associated grid information will be available in memory
anyway. However, in the case where users want to only
investigate the particle data, this design can be modified
to store the 3D global location of the particle rather than as
a vector. In this case, the particle’s vector and its magnitude
can be computed as needed in certain joint data operations.

Besides eliminating the preprocessing step by outputting
simulation data directly into the unit cell based format,
future work will also focus on developing joint represen-
tations and analyses in temporal neighborhoods. While this
method tends to treat individual timesteps separately from
one another, studying local temporal variations using both
reference frames simultaneously can provide new perspec-
tives into the data. New data operations and data structures
are essential in transforming our unit cell format into one
that efficiently represents an entire Eulerian and Lagrangian
temporal neighborhood.

6 CONCLUSION

This work presents a new joint Eulerian-Lagrangian data
representation geared towards enhancing analysis and vi-
sualization tasks that utilize both particle and volume data.
By organizing particles according to simulation geometry,
we can efficiently load and operate with both reference
frames simultaneously. This is especially useful in large-
scale settings where operating on representative data sub-
sets or in an out-of-core manner becomes a necessity. Testing
this method with real-world datasets shows its usefulness
when performing different joint operations. Furthermore,
performance tests on this method demonstrates its ability
to quickly load and generate results, especially in cases with
unstructured grids. This approach provides a groundwork
for developing alternate techniques that focus on combining
these different data modalities for enhanced analysis.

ACKNOWLEDGMENTS

We would like to thank Princeton Plasma Physics Labo-
ratory for providing the fusion dataset, Sandia National
Laboratory for the combustion dataset, and the 2015 Sci-
entific Visualization Contest for the cosmology dataset. This
research has been sponsored in part by the U.S. Department
of Energy via grants DE-SC0007443 and DE-SC0012610.

1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2620975, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 14

REFERENCES

[1] M. Adams, S.-H. Ku, P. Worley, E. D’Azevedo, J. Cummings,
and C.-S. Chang, “Scaling to 150k cores: Recent algorithm and
performance engineering developments enabling xgc1 to run at
scale,” Journal of Physics: Conference Series., vol. 180, no. 1, 2009.

[2] C. S. Yoo, E. Richardson, R. Sankaran, and J. Chen, “A dns study
on the stabilization mechanism of a turbulent lifted ethylene
jet flame in highly-heated coflow,” Proceedings of the Combustion
Institute, vol. 33, no. 1, pp. 1619–1627, Oct. 2011.

[3] A. Pobitzer, R. Peikert, R. Fuchs, B. Schindler, A. Kuhn, H. Theisel,
K. Matkovi, and H. Hauser, “On the way towards topology-
based visualization of unsteady flow – the state of the art,” in
EuroGraphics 2010 State of the Art Reports (STARs), 2010.

[4] A. Agranovsky, D. Camp, C. Garth, E. W. Bethel, K. I. Joy, and
H. Childs, “Improved post hoc flow analysis via lagrangian rep-
resentations,” in Proceedings of Large Data Analysis and Visualization
Symposium, Nov. 2014, pp. 67–75.

[5] P. Crossno and E. Angel, “Isosurface extraction using particle
systems,” in Proceedings of Visualization ’97, Oct. 1997, pp. 495–498.

[6] B. Jobard, G. Erlebacher, and M. Hussaini, “Lagrangian-eulerian
advection of noise and dye textures for unsteady flow visual-
ization,” IEEE Transactions on Visualization and Computer Graphics,
vol. 8, no. 3, pp. 211–222, Jul. 2002.

[7] B. Jönsson, J. Salisbury, and A. Mahadevan, “Extending the use
and interpretation of ocean satellite data using lagrangian mod-
elling,” International Journal of Remote Sensing, vol. 30, no. 13, pp.
3332–3341, Jul. 2009.

[8] S. Patkar, M. Aanjaneya, D. Karpman, and R. Fedkiw, “A hy-
brid lagrangian-eulerian formulation for bubble generation and
dynamics,” in Proceedings of ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation, 2013, pp. 105–114.

[9] F. Sauer, H. Yu, and K.-L. Ma, “Trajectory-based flow feature track-
ing in joint particle/volume datasets,” IEEE Trans. on Visualization
and Computer Graphics, vol. 20, no. 12, pp. 2565–2574, Dec. 2014.

[10] F. Harlow, “The particle-in-cell method for numerical solution of
problems in fluid dynamics,” Math Comp Phys, vol. 3, pp. 319–343,
1964.

[11] J. N. Mpagazehe, “A physics-based, eulerian-lagrangian computa-
tional modeling framework to predict particle flow and tribologi-
cal phenomena,” Ph.D. dissertation, CMU, May 2013.

[12] J. Guilkey, T. Harman, A. Xia, B. Kashiwa, and P. McMurtry, “An
eulerianlagrangian approach for large deformation fluidstructure
interaction problems, part 1: Algorithm development.” in Fluid
structure interaction II. Cadiz: WIT Press.

[13] T. Harman, J. Guilkey, B. Kashiwa, J. Schmid, and M. P, “An
eulerianlagrangian approach for large deformation fluidstructure
interaction problems, part 2: Multi-physics simulations within a
modern computational framework.” in Fluid structure interaction
II. Cadiz: WIT Press.

[14] Y. Zhang and A. Baptista, “Selfe: A semi-implicit eulerian-
lagrangian finite-element model for cross-scale ocean circulation,”
Ocean Modeling, vol. 21, no. 3-4, pp. 71–96, 2008.

[15] Y. Fan, J. Litven, D. I. W. Levin, and D. K. Pai, “Eulerian-on-
lagrangian simulation,” ACM Trans. on Graphics, vol. 32, no. 3, pp.
22:1–22:9, Jul. 2013.

[16] J. Wilhelms and A. V. Gelder, “Octrees for faster isosurface gener-
ation,” ACM Trans. on Graph., vol. 11, no. 3, pp. 201–227, 1992.

[17] R. Xu, L. Kang, and H. Tian, “A g-octree based fast collision
detection for large-scale particle systems,” in Proceedings of the
International Conference on Computer Science and Electronics Engi-
neering, 2012, pp. 269–273.

[18] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann, “Gigavoxels:
Ray-guided streaming for efficient and detailed voxel rendering,”
in Proceedings of the Symposium on Interactive 3D Graphics and
Games, 2009, pp. 15–22.

[19] S.-K. Ueng, C. Sikorski, and K.-L. Ma, “Out-of-core streamline
visualization on large unstructured meshes,” IEEE Trans. on Vi-
sualization and Comp. Graph., vol. 3, no. 4, pp. 370–380, Oct. 1997.

[20] H. Yu, C. Wang, and K.-L. Ma, “Parallel hierarchical visualiza-
tion of large time-varying 3d vector fields,” in Proceedings of the
ACM/IEEE Conference on Supercomputing, Nov. 2007.

[21] C. Wächter and A. Keller, “Instant ray tracing: The bounding in-
terval hierarchy,” in Proceedings of the 17th Eurographics Conference
on Rendering Techniques, 2006, pp. 139–149.

[22] C. Garth and K. I. Joy, “Fast, memory-efficient cell location in
unstructured grids for visualization,” IEEE Trans. on Visualization
and Computer Graphics, vol. 16, no. 6, pp. 1541–1550, Nov. 2010.

[23] N. Andrysco and X. Tricoche, “Matrix trees,” in Proceedings of the
12th Eurographics/IEEE-VGTC Conf. on Visualization, Aug. 2010.

[24] D. Ellsworth, B. Green, and P. Moran, “Interactive terascale par-
ticle visualization,” in Proceedings of IEEE Visualization, Oct. 2004,
pp. 353–360.

[25] M. Treib, K. Bürger, F. Reichl, C. Meneveau, and A. S. abd
Rüdiger Westermann, “Turbulence visualization at the terascale
on desktop pcs,” IEEE Transactions on Visualization and Computer
Graphics, vol. 18, no. 12, pp. 2169–2177, Dec. 2012.

[26] J. Woodring, J. Ahrens, J. Figg, J. Wendelberger, S. Habib, and
K. Heitmann, “In-situ sampling of a large-scale particle simulation
for interactive visualization and analysis,” in Proceedings of the 13th
Eurographics/IEEE-VGTC Conference on Visualization, 2011.

[27] T. Peterka, R. Ross, B. Nouanesengsy, T.-Y. Lee, H.-W. Shen,
W. Kendall, and J. Huang, “A study of parallel particle tracing
for steady-state and time-varying flow fields,” in Proceedings of
Parallel and Distributed Processing Symposium, May 2011.

[28] Y. Su, G. Agrawal, J. Woodring, K. Myers, J. Wendelberger, and
J. Ahrens, “Taming massive distributed datasets: Data sampling
using bitmap indices,” in Proceedings of the 22Nd International
Symposium on High-performance Parallel and Distributed Computing,
ser. HPDC ’13. New York, NY, USA: ACM, 2013, pp. 13–24.

[29] Y. Su, G. Agrawal, J. Woodring, A. Biswas, and H.-W. Shen,
“Supporting correlation analysis on scientific datasets in parallel
and distributed settings,” in Proceedings of the 23rd International
Symposium on High-performance Parallel and Distributed Computing,
ser. HPDC ’14. New York, NY, USA: ACM, 2014, pp. 191–202.

[30] R. Fraedrich, J. Schneider, and R. Westermann, “Exploring the
millennium run - scalable rendering of large-scale cosmological
datasets,” IEEE Transactions on Visualization and Computer Graphics,
vol. 15, no. 6, pp. 1251–1258, Nov. 2009.

[31] M. Hopf, M. Luttenberger, and T. Ertl, “Hierarchical splatting
of scattered 4d data,” IEEE Computer Graphics and Applications,
vol. 24, no. 4, pp. 64–72, Jul. 2004.

[32] K. Bürger, P. Kondratieva, J. Krüger, and R. Westermann,
“Importance-driven particle techniques for flow visualization,” in
Proceedings of the IEEE Pacific Visualization Symposium, Mar. 2008.

[33] S. W. Skillman, M. S. Warren, M. J. Turk, R. H. Wechsler, D. E. Holz,
and P. M. Sutter, “Dark Sky Simulations: Early Data Release,”
ArXiv e-prints, vol. 407.2600, Jul. 2014.

Franz Sauer is a fourth-year graduate student
at the University of California, Davis, studying
computer science and scientific visualization un-
der Kwan-Liu Ma. His research interests include
data visualization, large-scale scientific simula-
tions, computer graphics, and physics. Sauer
received a BS in physics from the California
Institute of Technology.

Jinrong Xie received his Ph.D. in computer sci-
ence from University of California, Davis. His
research interests mainly include scientific visu-
alization, large scale parallel graphics rendering
and data analytics. He was working with Pro-
fessor Kwan-liu Ma in the VIDI research group.
Before joining UCDavis, Xie was a master stu-
dent in the College of Computer Science and
Technology, Zhejiang University.

Kwan-Liu Ma is a professor of computer sci-
ence and the chair of the Graduate Group in
Computer Science (GGCS) at the University of
California, Davis, where he leads the VIDi re-
search group and directs the UC Davis Center
for Visualization. His research interests include
visualization, high-performance computing, and
user interface design. Ma received a PhD in
computer science from the University of Utah.
He is an IEEE Fellow.

