
1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2642103, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Scalable Visualization of Time-varying
Multi-parameter Distributions Using Spatially

Organized Histograms
Tyson Neuroth, Member, IEEE, Franz Sauer, Member, IEEE, Weixing Wang, Stephane Ethier,

Choong-Seock Chang, and Kwan-Liu Ma, Fellow, IEEE

Abstract—Visualizing distributions from data samples as well as spatial and temporal trends of multiple variables is fundamental to
analyzing the output of today’s scientific simulations. However, traditional visualization techniques are often subject to a trade-off
between visual clutter and loss of detail, especially in a large-scale setting. In this work, we extend the use of spatially organized
histograms into a sophisticated visualization system that can more effectively study trends between multiple variables throughout a
spatial domain. Furthermore, we exploit the use of isosurfaces to visualize time-varying trends found within histogram distributions.
This technique is adapted into both an on-the-fly scheme as well as an in situ scheme to maintain real-time interactivity at a variety of
data scales.

Index Terms—histograms, particle data, large-scale data, in situ processing, time-varying data, isosurfaces, scientific visualization

F

1 INTRODUCTION

THE ability to visualize and understand the data distri-
butions of multiple variables simultaneously has nu-

merous scientific applications. One class of applications in
particular, the study of fluids, can rely on analysis of field
and/or particle data produced by simulations. The ability
to intuitively explore such data types can lead to a better
understanding of phenomena such as fusion [1], [2], particle
acceleration [3], or combustion [4].

However, visualization techniques are often subject to
a trade off between clutter and loss of information. Vi-
sualizing all data values of every available entity within
the domain can result in a great deal of clutter, whereas
averaging data values can result in a loss of information
and can eliminate potentially important minor trends.

The use of histograms or distribution functions can be
a powerful data reduction tool that can eliminate clutter
while maintaining subtle trends found in the data. Spatially
organizing these histograms throughout a simulation do-
main allows one to distinguish spatial variations as well.
This results in an information dense visualization of data
distributions, with a favorable structure that lends well to
user interaction and efficient computation. Many challenges
of using such a technique lie in the ability to present these
information-rich histograms in a usable and easy to under-
stand manner.

Our previous work [5] focused on using spatially or-
ganized histograms to represent the overall motion within

• Tyson Neuroth, Franz Sauer, and Kwan-Liu Ma are with the Department
of Computer Science, University of California at Davis, Davis, CA, 95616.
E-mail: taneuroth@ucdavis.edu, fasauer@ucdavis.edu, ma@cs.ucdavis.edu

• Weixing Wang, Stephane Ethier and Choong-Seock Chang are with the
Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton,
NJ, 08540.
E-mail: wwang@pppl.gov, ethier@pppl.gov, cschang@pppl.gov

sets of discrete objects. These “velocity histograms” were
able to provide a low clutter and intuitive representation
of velocity distributions, highlighting both major and minor
trends. However, the work was limited to studying motion
(velocity), and was only applied on a per time step basis.

This new work extends and generalizes some of the
concepts introduced in [5]. The system now supports the
visualization of 1D or 2D spatially organized histograms,
and the user can construct them from any available or
derivable variables. This allows users to explore a wide
variety of relationships between the properties of entities,
as well as their motion throughout the domain.

Additionally, this work focuses on developing new vi-
sual representations that can encode time-varying trends
present in the histogram data. This is a challenging task
since temporal properties of the histograms need to be
represented in an intuitive manner. This becomes even more
difficult when histograms are 2D rather than 1D. Since a
temporal sequence of 2D histograms can be stacked into
a 3D volume, we utilize isosurfaces and isocontours to
describe time-varying trends in the data. Each isosurface
represents a boundary between bins that contain a higher or
lower frequency compared to the isovalue.

Another challenge lies in the massive amounts of data
generated by large scale simulations. As a variety of param-
eters can be chosen when generating histograms to highlight
different aspects of the data, this technique is best suited as
an interactive visualization tool. However, special care must
be taken in order to maintain fluid interactivity in large-scale
datasets. As a result, we maintain both on-the-fly and in
situ methods of histogram generation in order to efficiently
handle a variety of dataset types and sizes.

In this paper, we present our new histogram-based visu-
alization techniques and make the following contributions:



1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2642103, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

• We extend our past work on spatially organized
velocity histograms to visually represent the relation-
ships between variables other than velocity.

• We develop a visual representation based on iso-
surfaces that can be used to explore time-varying
properties in 2D histograms.

• We maintain two techniques for histogram genera-
tion: an on-the-fly scheme for smaller datasets, and
an in situ scheme for large-scale datasets.

• We integrate these techniques into a coherent and
usable visualization software.

We demonstrate the effectiveness of our approach using
case studies from a variety of real-world datasets.

2 RELATED WORK

There are many works that focus on reducing clutter in
flow visualization that are applicable to this problem since
many flow datasets can take a Lagrangian (particle-based)
representation. Kirby and Laidlaw [6] used concepts from
painting to design a multi-layer representation of colors and
textured patterns to represent different parameters of a flow
field in an easy to read manner. Obermaier and Joy [7] used
a unique visualization of metric tensors to show deforma-
tions on 3D surfaces in a flow. Properties like the velocity
gradient can be represented on these surfaces using elliptical
glyphs. In addition, topology-based methods, which were
first introduced by Helman and Hesselink [8], can be used
to extract specific flow patterns of interest and present them
in a low-clutter way. However, many of these methods are
still limited in that they can hide useful details since major
trends will tend to be favored over minor trends.

The use of histograms has made a very strong presence
in the computer vision community. For example, Ihad-
dadene and Djeraba [9] utilize a block direction histogram to
represent the overall motion of crowds in different “blocks”
or fields of view. Romanoni et al. [10] utilize spatio-temporal
histograms for background subtraction in cases where the
camera is in motion. Another example is the use of “His-
tograms of Oriented Gradients” as feature descriptors. Dalal
et al. [11] utilize these for the accurate detection of humans
that are in motion relative to the background or camera.
Lastly, histograms were utilized by Jung et al. [12] in the
clustering of visually tracked objects by identifying similar
neighborhoods in the histograms.

To explore spatial trends, we rely on a panning-window
style partitioning to define the spatially organized his-
togram layout. This can be considered a type of “Magic
Window” as defined by Tominski [13]. Other methods have
been used to show spatial variation and uncertainty in
a summarized manner. For example, glyphs have been
designed for visualizing uncertain flow fields by showing
ranges of possible velocities [14]. Furthermore, Hlawatsch
et. al [15] have designed a glyph which encodes various
statistical information.

Histograms also have prevalent use in domain specific
areas, such as geophysics [16], superfluids [17], and fu-
sion [18] to name a few. This is because they excel at
summarizing distributions, and can be used to visualize sta-
tistically accurate correlations between multiple variables.

While the spatially organized histograms that we use enable
the exploration of multiple data parameters at once in a low
clutter manner, there are numerous other techniques that
have explored the topic of multi-dimensional data analysis.
These include methods such as scatter plotting techniques,
multivariate topology, and more, and are well summarized
in the survey by Kehrer and Hauser [19].

Visualizations showing temporal changes in 1D his-
tograms are used in areas such as electrical engineering,
audio analysis, radar, and seismology [20], [21], [22], [23].
In these applications, the 1D histograms represent wave-
frequency distributions and the temporal stacks are referred
to as spectrograms, cumulative spectral decay plots, or more
generally as waterfall charts. The 2D histogram stacks that
we use in this work could be considered a higher dimen-
sional extension of such plots, which require more advanced
rendering methods and interactive parameter controls to be
used effectively for visualization.

Using isosurfaces to visualize frequency distributions
has been explored before, for example to study electrical
activity involved in ventricular fibrillation [24]. Also, Kao
et al. used a 3D histogram cube representation to visualize
non-temporal features in 2D distributions from EOS satellite
data [25]. Their 3D histogram cubes were termed “pixel-
wise summaries” and used the third dimension to represent
properties of the 2D histograms, such as the mean, median,
standard deviation, interquartile range, kurtosis and skew-
ness.

Isosurfacing and other volume based visualizations
have been used to study time-varying data, for example
Woodring et al. introduced direct volume rendering tech-
niques for visualizing time-varying data, termed “Chrono-
volumes” [26]. Shen et al. proposed a fast algorithm for
time-varying volume visualization based on the time-space
partition tree [27]. Other useful techniques for temporal
analysis of flow data rely on“time and streak surfaces” [28],
[29]. Alternatively, Widanagamaachchi et al. [30] developed
techniques to temporally correlate features and investigate
their tracking graphs in turbulent combustion simulations.
Applying these methods to features in the temporally evolv-
ing histograms in our work could provide an alternative
way of visualizing their evolution over time.

Lastly, storing in situ generated distributions as a way
of downscaling the data storage of results from large-scale
simulations has also been investigated before. Thompson et
al. [31] leveraged such in situ generated histograms for fea-
ture detection through statistical and topological methods.
In situ generated histograms are also useful for analyzing
results from gryokinetic simulations, such as GTC [2]. How-
ever, advanced interactive software designed for exploring
this type of data has been lacking.

3 BACKGROUND

Before we describe our methods, we introduce some prelim-
inary background knowledge about the types of histograms
we can make use of as well as the data types that our
methods can support.

3.1 Histograms
A histogram can be used to represent the distribution of
discrete data objects. The desired variables of each object



1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2642103, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Fig. 1. An image depicting the visual representation used for 1D and 2D
histograms in this work. Left) A 1D histogram discretized into bins. The
frequency of entities sampled into each bin is represented by the height
of the bar. Right) A 2D histogram with each bin represented by a colored
cell. Darker colors represent bins with higher frequency magnitude, and
when visualizing weighed histograms, hue can differentiate between
positive (red-orange) and negative (blue) bin values.

are sampled and binned into histogram cells, as in Figure 1.
A 1D histogram represents the distribution of values for
a single variable, and bar height can be used to encode
the bin frequencies (left). A 2D histogram represents the
distribution of values in two variables (right). In this case,
we can use color to represent bin frequency and, when
appropriate, hue to differentiate bins with a net positive or
negative value (see next section).

3.2 Weighted Histograms

In some cases, it is necessary or useful to weight the contri-
butions of each sampled object. We compute our weighted
histograms in raw form as follows, where H(i, j) gives the
value of the bin at row and column (i, j), bin(i, j) represents
the set of objects mapped to it, and wk is the weight for the
sampled object, ok.

H(i, j) =
∑

ok∈bin(i,j)

wk

In various particle-in-cell fusion simulations such as
XGC [1] and GTC [2], the simulation particles each represent
a variable number of real-particles. In this case, scientists
need to use this value as a weight in order to see the
proper distributions corresponding to the modeled physical
system. Furthermore, these weights represent perturbations
from a Maxwellian background and thus can be negative or
positive. Still, visualizing the distributions of unweighted
simulation-particles can be useful for making sense of how
the simulation is behaving.

Alternatively, one could use any variable in the data
as a weight when generating the histograms. This allows
users to view additional information in the limited 1D or 2D
spaces, since the frequency counts are now being adjusted
by a separate variable. However, it must be considered that
the ”frequency” of a certain bin can be caused by a large
number of objects with a small weight, or a small number
of objects with a large weight (see Section 4.3.4). As an
analogy, suppose you want to see distributions of campaign
contributions in a local election. You could compute an un-
weighted histogram showing how many people contributed

Fig. 2. An overview of our workflow. Histograms can be constructed
on-the-fly (directly from particle data) or from pregenerated high res-
olution histograms that were computed in situ. A user interfaces with
the visualization software and can explore the data using three primary
linked views: a histogram viewer which shows the spatially organized
histograms, a trajectory viewer which shows the trajectories of particles
corresponding to selected bins, and a time-varying visualization which
uses isosurfaces to show temporal patterns of a selected histogram.

to a campaign. Alternatively, you could weight each contri-
bution by its amount in order to see how money/influence
is distributed. Furthermore, weighting contributions to one
party negative and the other positive allows one to see how
deviations from a neutral position are distributed.

3.3 Applicable Data Types
Any set of data points embedded in a mathematical space
can be sampled in order to summarize their distributions. In
this paper, we focus on particle data from fusion and accel-
erator simulations. However, we could also operate on data
associated with discrete grid points. Furthermore, as we can
also partition and sample entities in non-physical spaces,
we can visualize and study many different combinations
of variables in a single visualization. Thus the techniques in
this paper can be applied to many multi-parameter datasets,
and are not limited to just scientific simulation data. Without
loss of generality, we will use the term particles throughout
the rest of this paper to describe the discrete objects being
sampled.

4 METHODS

The main application of this technique is for interactive
visualization of multiple data distributions, both spatially
and temporally throughout a simulation domain. Desired
variables of particle data are sampled in order to form a
set of spatially organized histograms to be visualized by the
user. The means of sampling and generating the histograms,
constructing their visual representations, and interactively
exploring their trends are all important factors and are
described in more detail in the following sections.

4.1 Overview
One important aspect of such a technique is the ability
to interactively explore the data through a variety of ad-
justable parameters and configurations, (e.g., chosen vari-
ables, size/distribution of sampling regions, histogram res-
olution, etc.). As a result, the histograms displayed to a user



1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2642103, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Fig. 3. a) Color can be used to highlight spatial variation throughout the domain, but does not show trends between variables. b) A vector plot
showing particle motion (color mapped to magnitude) results in clutter, even when plotting only 0.5% of the full data. c) A scatter plot can be used
to show trends between two variables in the particle data, but does not show how such trends differ throughout the domain. d) Spatially organized
histograms can display both trends between different variables and spatial variation throughout the domain in a low clutter manner.

need to be constructed at runtime; however, this is one of the
most computationally expensive steps. We therefore provide
two schemes for histogram generation, each designed to
handle different dataset sizes as shown in Figure 2. For
smaller datasets, we utilize GPU acceleration to efficiently
sample and bin the raw simulation data directly. The pre-
sented visualization updates in real time according to any
parameter adjustments. For large-scale datasets, we provide
an alternate method that can emulate the same interactivity.
Instead of sampling the raw data values directly, a set of
high resolution histograms are constructed in situ and saved
to disk. These can then be sampled in real time according to
the user controlled parameters.

The visualization tool itself provides multiple linked
views which can be used to explore different aspects of
the data. A trajectory viewer is used to directly view raw
simulation data and provides spatial context as well as
detailed information on demand. The histogram viewer
presents a set of spatially organized histograms which can
present major and minor trends in the data in a low clutter
manner. This view focuses on exploring spatial differences
in 1D or 2D histograms. Lastly, a time-varying visualization
is provided for exploring temporal variation. Histograms
of interest are stacked into a 3D volume, and isosurfaces
are used to visually represent their temporal patterns and
trends.

4.2 Spatially Organized Histograms

As previously described, histograms are a powerful method
of visualizing overall trends in the variables of a group
of objects. We extend this technique to also study how
distributions differ throughout a 2D mathematical space of
interest. This is done by partitioning the space into a desired
number of subsections. All of the particles within a partic-
ular subsection are then sampled to form a histogram for
that region. A comparison between these spatially organized
histograms can show how the distributions differ according
to spatial variation in the underlying data. Moreover, by

adjusting the resolution of the spatial partition, one can
highlight small-scale details, or general trends that permeate
larger portions of the domain. This is discussed further in
Section 4.3.

The main advantage to using spatially organized his-
tograms is illustrated in Figure 3. One traditional visualiza-
tion method for exposing spatial variation in data is to plot
variables directly, using color to represent their values (part
A). While this makes spatial variation clear, it is difficult
to compare multiple variables at once without introduc-
ing confusion, over-plotting and clutter. Furthermore, using
vector plots to describe the motion of a set of particles can
result in a great deal of clutter (part B). To compare trends
between multiple variables, scatter plots may be used where
each axis represents a particular variable (part C). How-
ever, such a view does not show how the variables differ
according to spatial variation. A spatially organized set of
histograms can be used to represent both spatial variation
as well as trends between variables simultaneously in a low
clutter manner (part D).

4.2.1 On-the-fly Sampling Using GPU Acceleration
When the data sizes are manageable, histogram generation
can be done on-the-fly using GPU acceleration. This is
important since user controlled parameters strongly affect
how the histograms need to be generated and presented in
the visualization. By sampling the raw data values in real
time, users can interactively explore multiple aspects of the
data.

Our implementation for computing the spatially or-
ganized histograms for a single time step leverages the
graphics pipeline using GLSL shaders. Each histogram bin
corresponds to a single texel of a single channel texture.
The variables and spatial positions of the particles that will
be sampled are transferred to the GPU in the form of a
vertex buffer. Interactive parameters such as the position
and structure of the sampling grid, the histogram resolution,
and the normalization factors, are transferred to the GPU as
well. The vertex shader then maps each object to a sampling



1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2642103, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Fig. 4. A screenshot of the user interface. The interface consists of three main views: the histogram view (A), the trajectory view (B), the time-varying
view (C). Additionally, a minimap depicting the zoom and location of the histogram view is shown on the top-left and a detailed view of the selected
histogram is shown on the bottom-left.

region based on its spatial position and to a histogram bin
based on its values. The result is a texel index which must
then be converted into the correct position in normalized de-
vice coordinates before being input to the fragment shader.
With additive blending enabled, the fragment shader then
increases the value of the texel corresponding to the mapped
histogram bin. The end result is a texture storing the com-
puted spatially organized histograms.

4.2.2 In Situ Generation and Sampling
The interactive capabilities available through an on-the-fly
sampling method are a major facet of our visualization
tool. However, the computational overhead of histogram
generation in larger datasets limits the responsiveness of
the system, impeding real time exploration. As a result, we
implement an alternative in situ processing based scheme
which can be used to handle large scale datasets while
minimizing loss of functionality in the visualization tool.
In this scheme, raw data values are directly sampled and
transformed into a histogram-based representation during
the runtime of the simulation, allowing us to accumulate
the statistical information of particles at much larger scales.

Each of these pregenerated histograms are saved so that
they can be sampled in real time by the visualization tool
during post hoc analysis. Each histogram is sampled onto
a mesh, dependent on the type of simulation, where each
grid point represents the center of a 3D volume from which
particles are sampled. Since the size of each sampling region
can vary, especially in unstructured grids, the volume of the
sampling region is also saved. In turn, this can be used to
normalize and more accurately sample histograms in the
visualization tool. To suit their needs, users can control a

balance between the temporal resolution in which to write
the histograms to disk, the spatial resolution of the sampling
mesh, and the resolution of the histograms themselves.

Our interactive system then samples this more manage-
able data representation for interactive exploration. Because
the grid sizes can be dense and unstructured, it is often effec-
tive to visualize an overview at a reduced level of detail. For
this reason, we partition the domain into disjoint sampling
regions, as we do in the on-the-fly scheme, and sample grid
points and their associated histograms by region. The his-
togram values of grid points that fall into the same sampling
region are then merged using an appropriate normalization
factor, N , and the net sampling volume,

∑
Vk, where k

is the grid point index. When integrating these techniques
into GTS [2] (a fusion simulation), the normalization factor
is equal to the inverse of the total phase space volume
where particles are sampled from. The resulting normalized
histogram values are computed as follows:

H(i, j) =
N∑
Vk

∑
hk(i, j)

where hk(i, j) is the 2D histogram of a sampled grid point
with index k and H(i, j) is the resulting merged histogram.

4.3 Visualization System
The visualization system ties together three main interactive
views: a histogram view, a trajectory view, and a time-
varying view. Each representation presents a different per-
spective into the data and allows for real time exploration.
Furthermore, each view is linked so that selections and
interactions in one view simultaneously affect the other. This



1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2642103, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Fig. 5. An alternate example of the three main visualization views. A
set of spatially organized 1D histograms is being generated from the
particle data in the histogram view (top-left). Trajectories for particles
corresponding to a moused-over bin are shown in 3D in the trajectory
view (top-right). A spectrogram-like plot shows the evolution of the
distribution in the selected histogram over time in the time-varying view
(bottom).

multi-faceted approach allows users to investigate multiple
aspects of the data at the same time. Figure 4 shows an
overview of the user interface of the visualization tool.

4.3.1 The Histogram View

The histogram view presents the 1D or 2D histograms
that were computed using either the on-the-fly or in situ
sampling and binning schemes. By comparing the rela-
tive frequencies of different histogram bins, users can ex-
plore trends between multiple variables and spatial regions
throughout the simulation domain simultaneously. Figure 5
shows the use of 1D histograms in the histogram view.

By default, this view uses a panning window approach.
The screen space is partitioned into a regular grid of sam-
pling regions. Entities within each sampling region are used
to construct histograms in real time based on a configuration
of parameters. The user interface can be used to control
these parameters, such as the resolution of the spatial par-
tition, the resolution of the histograms, and the variables
that are used for the spatial organization and histogram
generation. When the user drags the mouse over the view
space, or zooms in, the sampled particles move relative to
the screen, while the grid remains fixed. We also employ a
layout that remains fixed with respect to the particles as
the user pans and zooms. Such a layout has the benefit
that zooming and panning can be done without affecting
the sampling partition. However, the panning window ap-
proach gives more control over the locations of the sampling
regions with respect to the particles.

One potential disadvantage of partitioning the space
into rectangular sampling regions is that such regions may
not conform well to the geometries underlying the data.
This can be alleviated by projecting the data into different
spatial layouts. For example, the tokamak device geometry
is based on the magnetic flux surfaces that act to confine the
plasma. The two spatial variables of interest in this space
are the magnetic radius and the sweeping angle about the
center of the poloidal plane. By projecting the data from this
space into cartesian coordinates, such that poloidal angle is
mapped to the x-axis, and the magnetic radius is mapped to
the y-axis, the user can easily select regions that conform to

Fig. 6. Projecting curved geometry into a Cartesian viewport for easier
visualization and interpretation. A,B,C) Projecting sampling points into
a cartesian x-y layout based on radius and sweeping angle. A) The
selected grid points in another spatial context, B) The mini-map view,
C) The histograms overlaid over the projection. D,E,F) The same type of
projection with one dimension scaled to an extreme in order to favor
sampling the points based on one of the spatial variables over the
other. D) The selected grid points, E) The mini-map, F) The associated
histograms.

tokamak geometries of interest as in Figure 6. Furthermore,
we can scale the projection in each dimension separately,
allowing us to sample from larger ranges of one of the
variables relative to the other.

4.3.2 The Trajectory View
The trajectory view is used to show the overall motion of
sets of particles in either physical or phase space. Conve-
niently, the histogram view provides a powerful and unique
way of selecting desired particle subsets. Due to the simple
and regular structure of the spatially organized histograms,
the user can apply mouse interactions over a sampling
region and a bin in the associated histogram, and the system
can unambiguously and efficiently extract the correspond-
ing sampled particles. This process ultimately implements
a 2-level range based selection, with the first level corre-
sponding to a 2D spatial range (sampling region/histogram)
and the lower level a 1D or 2D value range (bin of a 1D
or 2D histogram). After the user makes such a selection,
the particle trajectories are constructed and displayed in the
trajectory view.

Since this process occurs in real-time, users can interac-
tively explore the motion of particle subsets in either physi-
cal space, phase space, or both. An example of a selection
can be seen in Figure 4B. In this case, the extent of all



1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2642103, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Fig. 7. The steps involved in generating the isosurfaces in the time-
varying view. First a frequency isovalue is chosen and displayed as
isocurves on the currently selected histogram. Next, histograms using
the same sampling parameters are generated for all available time steps
and stacked into a 3D volume. Lastly, an isosurface is generated with the
selected isovalue using marching cubes.

trajectories is drawn in gray, the trajectories corresponding
to the selected histogram are drawn in purple, and the
trajectories corresponding to the selected bin are drawn in
green. The lightness/darkness of the color represents the
density of trajectories at that location. To the left of the
trajectory view, bar charts show the distribution of weights
in the dataset as well as the selected histogram and bin.
This feature provides useful information in the case where
the histograms are weighted, and also provides an interface
for additional weight based levels of particle selection. See
Section 4.3.4 for more details.

4.3.3 The Time-varying Visualization
While the histogram view is effective for comparing trends
between variables as well as spatial differences throughout
the domain, it’s not effective for visualizing trends over
time. As a result, we implement a time-varying view which
can display temporal properties of a selected histogram.
Occlusion and over-plotting make it difficult and confus-
ing to view time-varying patterns for each bin in a 2D
histogram. Instead we rely on isosurfacing techniques to
extract surfaces from a volume that represent the histograms
values at each time step. We choose isosurfaces because they
are a simple and intuitive way of exploring a 3D volume.
While a more flexible direct volume rendering approach
could be another option, it would rely on careful selection of
the transfer function, which could be a burden on the user,
and could result in a more complex and difficult to interpret
visualization.

Figure 7 describes the process through which we gen-
erate the time-varying view. First, a histogram of interest
is selected. A user then chooses a frequency isovalue. This
forms a set of contours which separates the 2D histogram
into regions where the bins have a frequency higher than
the isovalue and regions where the bins have a frequency
lower than the isovalue. Next, additional 2D histograms

over a sequence of time steps are generated using the same
set of parameters (sampling region size, number of bins,
etc.). These are then stacked into a 3D volume, where two
dimensions represent each of the histogram variables and
the third dimension represents time.

As the construction of the time-varying visualization
requires computing histograms over many time steps, it
often represents the primary performance bottleneck of the
overall system. To accelerate this process we use the GPU.
For good performance, we want to evenly balance the work-
load between GPU threads. We must also prevent multiple
threads from attempting to update the same histogram
bin (at a single memory location) simultaneously. These
considerations affect our choice of how to parallelize the
computation, and which GPU computing platform to use.

One option would be to assign each GPU thread a sepa-
rate chunk of time steps. This has the benefit that concurrent
writes to the same memory address are implicitly avoided
as the computation for each time step is independent of
each other. However, because the number of time steps is
often small relative to the number of cores in modern GPUs,
and each time step may correspond to a large chunk of
data, this approach can lead to a load balancing problem.
Another option is to assign threads work based on particle
id. Because the number of particles is typically much larger
than the number of time steps, as well as GPU cores, this
approach can result in better load balancing. The drawback
is that different particles handled by different threads may
be mapped to the same bin, and therefore some locking
mechanism is required to ensure that only one thread up-
dates a bin’s memory address at a time.

Modern GPU architectures, e.g. NVIDIA’s compute ar-
chitectures since Kepler [32], support efficient hardware
based atomic operations on floating point data. Specifi-
cally, with CUDA, we can use the atomic_add(float*,
float) function to increment a bin within the GPU kernel.
Because we found parallelization over the particle ids using
atomic operations to be more efficient than parallelization
over the time steps, we choose to use this method.

We must also consider that all of the data that is needed
to compute the temporal view may not fit in GPU memory
at once. In this case, chunks of the data need to be processed
one at a time, which means that large amounts of data
need to be transferred to the GPU each time the histogram
parameters have changed and the visualization needs to be
recomputed. For our performance tests, we used a Titan X
graphics card with 12 GB of memory, which could safely
store over 500 time steps × 1,000,000 particles × 5 32-bit
floating point variables persistently in memory. In addition
to the particle data, GPU memory is allocated for the vol-
ume/histogram stack, but because the volume is typically
very small relative to the size of the particle data, its memory
footprint is insignificant.

When utilizing the in situ scheme, histograms have
already been computed per grid point and thus typically
represent a much smaller data size than the raw particles
they were computed from. In addition, the grid points do
not move over time, so the mapping of a grid point to a sam-
pling region needs to be done only once while recomputing
the time-varying view. As a result, this procedure can be
done reasonably quickly using only CPU thread parallelism



1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2642103, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Fig. 8. An image demonstrating the ability to use the time-varying view to construct isosurfaces over a spatial path rather than through time.
Histograms are sampled along this path (shown at the right). These are then stacked into a 3D volume to be visualized by isosurfaces. The views
on the top left show isosurfaces from various isovalues and viewing angles and reveal distinct trends in the data.

along with CPU vector instructions.
Once the 3D volume has been computed, we perform

marching cubes [33] to generate the isosurfaces. In general,
the time it takes to construct the isosurface geometry is
insignificant compared to the time it takes to generate the
3D volume. Performance tests for computing the 3D vol-
ume/2D histogram stack can be found in section 4.3.

Once the isosurfaces have been generated, users are free
to pan, rotate, or zoom around the constructed mesh. An
intersecting slicing plane indicates the currently selected
time step and helps to orient the viewer. Users can also
adjust any histogram or isovalue parameter and receive real
time feedback on how the mesh changes form.

When visualizing a 1D histogram over time, we use a
waterfall chart. In this case we can incorporate the values
of each bin into the visualization. The 1D histograms are
stacked and connected into complex polygons depth-wise
over time. An example of this can be seen in Figure 5.

4.3.4 Other Features

As previously described, a particular bin in a weighted
histogram could represent different numbers of discrete
particles, depending on their weights; a small number of
high weight particles and a large number of low weight
particles could map to the same “weighted frequency”. As
a result, we also provide a visualization of the distribution
of weights from a selected bin or histogram, as well as from
the full particle data. This can be seen in the left portion of
Figure 4B as 1D histograms. Selecting a subset of particle
weights from the distribution highlights the bar and any
corresponding trajectories in white.

An additional feature is the ability to stack histograms
into a 3D volume based on a physical path through the
domain rather than through time. In this case, histograms
are generated along a discrete set of points along the path.
Each point represents the center of a sampling region from
which particles are sampled. In this case, the isosurfaces
represent variations in the distribution between variables
along this physical path. An example of this can be seen in
Figure 8 where grid points are sampled along a line from

the center of the poloidal plane to the edge of the high
field (right) side. The histogram stack is ordered by radial
distance and shows how the distributions change according
to this spatial variation.

Normalization of the color scale is another factor that
users can adjust interactively. Sometimes it is useful to
visualize variations in bin frequency, or sample sizes, across
multiple histograms at once. In such cases, it is important
to ensure that the color mapping used is globally consistent
across every region and time step. However, this can reduce
the usable color range for histograms with relatively low
maximum bin frequencies, and as a result can hide patterns
and make variation in-perceivable for certain individual
histograms. For this reason, the user interface includes a
slider to apply a global normalization factor in order to
amplify unpronounced features. We also provide a local
normalization feature which allows the full range of color to
be used in each histogram independent of its maximum fre-
quency relative to the other histograms. Local normalization
is favorable for showing how the variables are distributed
within each region, individually. When the user chooses
local normalization, the histogram view is affected as well
as the temporal volume, in where the histograms will be
normalized on a per-histogram, per-time step basis.

5 RESULTS

We demonstrate the effectiveness of our system using a
set of real world datasets in the fields of fusion and par-
ticle accelerator research. We use results from two different
fusion simulations to test the on-the-fly and in situ sam-
pling schemes provided by our system and demonstrate
the unique patterns that the visualization can highlight. We
then test the system using a particle accelerator dataset to
show its applicability to other fields of science. Lastly, we
provide performance results to justify the interactivity of
our technique when using either sampling scheme.

5.1 Fusion Datasets
Nuclear fusion is a promising future energy source, but chal-
lenges remain before it can be made practical. Simulations of



1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2642103, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Fig. 9. Using the time-varying visualization to study temporal trends for a selected histogram in the XCG1 dataset. The horizontal histogram variable
represents velocity parallel to the magnetic field, while the vertical histogram variable represents velocity perpendicular to the magnetic field. Left)
The temporal view is shown using 4 different isovalues, low to high from top to bottom. Right) The histogram view. In the mapping of color to
frequency, a global threshold was used, and the volume was normalized uniformly at each time step. The visualization highlights the differences in
overall weighted particle frequency in different areas of the domain as well as over time. One interesting aspect shown in this visualization is how
the distribution starts out quad-modal and evolves to become bi-modal.

Fig. 10. Using the time-varying visualization to study temporal trends for a selected histogram in the XCG1 dataset. The horizontal histogram
variable represents the magnetic radius, while the vertical histogram variable represents the magnetic field strength in a direction that runs around
the torus geometry. The isosurfaces reveal complex wavelike patterns which tend to swap places with their positively and negatively weighted
counterparts.

the physical devices designed to harness the power of this
phenomena play a major role in acquiring the knowledge
required to solve these challenges. The fusion datasets we
explore come from large scale simulations developed by
research teams at the Princeton Plasma Physics Laboratory.

The first dataset comes from a simulation called
XGC1 [1], which is designed to study the physics of magnet-
ically confined plasmas in the edge region of tokamak de-
vices. The particular simulation run we study represents the
International Thermonuclear Experimental Reactor (ITER).
The dataset we use consists of about 286,000 particles over
282 time steps. We utilize the on-the-fly sampling and bin-

ning scheme with this data.

The second dataset comes from a simulation called
GTS [2], which is designed to study microturbulence in
fusion devices. In this case, we use the in situ sampling
scheme, in which a set of histograms is computed while the
simulation is running. These histograms are laid out on a
mesh consisting of 3,840 grid points, each with a resolution
of 33 by 17 bins. In addition, we use a dump of ∼15,000,000
particles in order to compare histograms resulting from our
on-the-fly and in situ schemes.



1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2642103, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Fig. 11. A) Visualizing the in situ generated histograms by merging histograms from the simulation grid points within each sampling region. B)
Comparing the same simulation using histograms generated on-the-fly from particles directly. C/D) Zooming in the domain from A and B respectively
highlights the advantages of using the in situ method. When the sampling regions have too few particles to sample (D) the histograms degrade in
quality and ability to faithfully capture the distributions. This is not an issue for the in situ case (C) since it was able to sample a much larger number
of particles during the simulation.

Fig. 12. An image depicting the in situ generated histograms from the GTS dataset. The horizontal histogram variable represents the velocity parallel
to the magnetic field, while the vertical histogram variable represents the velocity perpendicular to the magnetic field. The right side shows spatial
variations in the distributions throughout the simulation domain. The left side shows two time-varying isosurfaces of the selected histogram over
time at different isovalues. This reveals a unimodal to trimodal evolution of the distribution.

5.1.1 On-the-fly generation with XGC1
The fusion simulation represents a complex torus-like
shape. However, scientists are interested in the motion of
the plasma towards or away from chamber walls (in the
direction of the “minor radius” of the torus). As a result,
many visualizations (including our own) focus on present-
ing information on a 2D “poloidal” slice where the less
interesting motion in the third dimension is hidden. We
project all particles throughout the torus onto the slice view
so that the resulting histogram-based visualization, while
2D in nature, represents information from the entire 3D
domain.

Figure 9 shows an example of the system employ-
ing our on-the-fly sampling and binning scheme to visu-
alize the XGC1 dataset. In this case, the weight of the
particle describes the perturbation from the background
(Maxwellian) distribution. Positive/negative weights de-
scribe an increase/decrease of particle population from
the background. The histograms are computed using these

weights, and a divergent color map is used to differentiate
negatively (blue) and positively (red) valued bins. From the
figure, it can be seen that the distribution is initially quad-
modal and eventually becomes bi-modal. Additionally, one
can see how the contours expand over time; In this case,
that effect is primarily due to an overall growth in particle
weight as the simulation progressed.

When using our visualization tool, physicists have de-
scribed that it can easily investigate the perturbed dis-
tribution function and the particle trajectories which are
responsible for the perturbation. They mention that one very
useful example is monitoring growth of particle weights.
In their simulations, excessive growth of particle weight
could induce statistical noises and degrade the accuracy of
the simulations. Hence, monitoring the growth of particle
weights and identifying the cause are important to regulate
the statistical noises.

Another example can be seen in Figure 10. In this
example, the horizontal histogram variable represents the



1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2642103, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

magnetic radius, while the vertical histogram variable rep-
resents the magnetic field strength in a direction that runs
around the torus geometry. The time-varying isosurfaces
reveal complex wavelike patterns forming in distinct pos-
itively and negatively weighted groups. Furthermore, these
groups tend to swap positions over time occupying different
regions of phases space.

5.1.2 In Situ Generation with GTS
Next we test the in situ sampling and binning scheme using
data from the GTS simulation. Histograms are generated
during the simulation with access to the full particle data.
These histograms are then sampled based on user controlled
parameters. The values in the histograms represent energy
distributions in that the particles are weighted by energy
relative to a background value (which allows them to be
positive or negative).

The horizontal axis represents velocity parallel to the
direction of the magnetic field, whereas the vertical axis rep-
resents velocity perpendicular to the magnetic field. Since
the perpendicular velocity is represented as a magnitude,
it is always positive and results in only the top half of our
histograms bearing values. These types of velocity plots are
commonly used when studying gyrokinetic simulations.

Figure 11 shows an example of the in situ sampled his-
tograms using our visualization tool (A/C) vs. a comparison
to the on-the-fly particle-based sampling scheme (B/D). Due
to I/O limitations, the simulation is only able to dump a
small subset of the full particle data, forcing the on-the-fly
method to sample only 3% of all particles. The points in
the background show the grid points over which the in situ
generated histograms were computed. From the images it is
clear that the in situ version was able to capture more detail
since it represents statistical information from a much larger
sample size. This is further exacerbated when zooming into
the domain; as fewer particles are sampled per histogram,
eventually we observe excessive degradation of statistical
quality(D).

Figure 12 shows an alternate run of the GTS simula-
tion and focuses on studying time-varying properties. The
left side of the figure shows three different isosurfaces of
the selected histogram (which is outlined in yellow) with
time increasing towards the right. Each of these isosurfaces
shows a unimodal distribution towards the start of the
run with nearly all particles exhibiting a small parallel and
perpendicular velocity. This evolves into an overall trimodal
distribution consisting of: a small parallel and perpendic-
ular velocity, a large positive parallel and large positive
perpendicular velocity, and lastly a large negative parallel
and large positive perpendicular velocity. This is what forms
the distinct ”V-like” shape in the images.

We can also look at spatial variations within a single
time step as shown in the right side of the image. We can
see that these ”V-like” distributions are more prevalent near
the center of the cutting plane, whereas distribution closer
to the edges are smaller in shape, and consist primarily of
particles with small parallel and perpendicular velocities.

5.2 Accelerator Dataset
Our next example uses data from a simulation called ACE3P
[3], which is used to study the electromagnetic dynamics

within particle accelerators. The specific device this simu-
lation run studies is called a cryomodule, which uses a set
of resonating cavities to accelerate the particles. A better
understanding of certain processes such as dark current, in
which charged particles become emitted from the cavity
surfaces and enter the accelerating beam, can lead to an
improved design of the device.

In this application, we were interested in examining the
behavior of different clusters of particles rather than spe-
cific spatial regions. Therefore, we constructed a temporal
histogram stack for each particle cluster separately, and
used the sampling grid only for our initial cluster selection.
The histograms here represent momentum in the x and
y directions (perpendicular to the length of the device).
The visualization was made from about 15,000 particles
over about 3,000 time steps. This gives an overview of the
movement of the particles perpendicular to the beam and
easily highlights segments in time where apparent extreme
or abnormal behavior occurs.

Figure 13 shows a comparison of 5 different clusters of
particles (labeled A-E). In the time-varying view, time is
increasing towards the right. Since each isosurface repre-
sents momentum perpendicular to the motion of the beam,
expansion of the thickness of the isosurface tube can repre-
sent a point in time where instabilities are occurring. Such
instabilities can cause particles to exit the beam and become
deposited into a cavity downstream, potentially damaging
the device. Comparatively, it appears that cluster E is less
stable than clusters A through D.

5.3 Performance Results

The performance results for generating spatially organized
2D histograms for a single time step can be found in
our previous work [5]. This section will instead focus on
performance results for generating the 3D temporal volume
of stacked histograms for both the on-the-fly and in situ
methods. Generating the histogram volume is typically the
largest bottleneck of the overall system. Isosurface construc-
tion times are insignificant in comparison, considering the
typical sizes of the associated volumes. For example, a vol-
ume representing a 32×32 bin 2D histogram over time could
include over 16,000 time steps (larger than the typical use
case) before exceeding the size of a 2563 volume (relatively
small by today’s standards). For testing, we used an Intel
i7-5939K processor with 6 cores at 3.5 GHz and a Titan X
graphics card with 12 GB of memory. The main code was
compiled using the g++ compiler (version 4.8.4), while the
CUDA GPU kernel was compiled using the nvcc compiler
(version 7.0), both with -O3 optimizations enabled.

Figure 14 shows the timing results for the on-the-fly
method. The graph shows the time it takes to construct the
3D volume as a function of the number of time steps in the
data. Each curve represents a different number of particles
that are sampled. Since the number of particles in each
sampling region can vary over time, we artificially ensured
that each particle would be mapped to the selected sampling
region, which represents the worst case computationally. In
practice, the performance should be higher on average, as
in the intended use case the selected sampling region will
contain only a fraction of the full data.



1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2642103, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Fig. 13. The top of the image shows a visualization of clusters of particles in the cryomodule device with the mesh depicting the shape of the
device/individual cavities. In this case, they were colored categorically according to which cavity they were emitted from. A temporal histogram
isosurface was computed for each cluster, based on momentum in the x and y directions (perpendicular to the beam), and are shown side by side
for comparison. As opposed to the other clusters, the leading cluster (E) is made up almost entirely from particles that were emitted from the same
cavity. Additionally, the particles that make up this cluster experienced a higher than normal level of instability, especially during a time segment
starting about halfway though the available time steps.

The graph itself shows a linear increase in the time it
takes to compute the 3D volume, with distinct jumps that
occur at the points where all of the particle data cannot fit
into GPU memory. At those points, multiple chunks of data
need to be transferred to the GPU and processed one at a
time whenever the volume needs to be recomputed. The red
curve shows the most extreme test case, where we were able
to process 22 GB of particle data (1,000,000 particles × 1,100
time steps × (2 spatial variables + 2 histogram variables
+ 1 weighting variable) × 4 bytes) into a volume in less
than 2 seconds. As the number of particles increases, the
user may need to reduce the number of time steps and vice
versa, however the visualization can remain interactive with
reasonably large data sizes. For example, with 1,000,000 par-
ticles per time step, we can generate volumes representing
500 time steps and still get reasonably high frame rates. This
delay could be alleviated further with the use of additional
GPUs which could each process separate chunks of data
simultaneously.

Figure 15 shows the performance tests of the in situ
version. Each curve represents a different number of grid
points that are within the selected sampling region. Because
the grid points remain fixed over time (unlike particles),
mapping them to sampling regions only needs to be done
once, each time the sampling layout changes, and the rest
of the computation involves only summations, which can
be done very efficiently. These timing results are based on
our parallel CPU implementation (using OpenMP) which
also utilizes vector CPU operations to further increase per-
formance.

Temporal Histogram Stack Generation
from Raw Particle Data

0 200 400 600 800 1,000 1,200

0

500

1,000

1,500

2,000

75.6

20.5

Number of Time Steps

Ti
m

e(
m

s)

P = 200000
P = 400000
P = 600000
P = 800000
P = 1000000

Fig. 14. Timing results for the time-varying visualization using the on-
the-fly method with varying numbers of particles (P). Jumps occur when
the GPU can no longer keep all of the time steps persistently in memory.
Sampling 1,000,000 particles, we were able to achieve fluid interaction
while computing up to 500 time steps per volume.

6 DISCUSSION

The above results demonstrate the ability of our system to
visualize trends between variables in conjunction with spa-
tial trends, and to analyze time-varying properties. Main-
taining generality allows the system to be applicable to a



1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2642103, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

Temporal Histogram Stack Generation
from Pregenerated Histograms

0 200 400 600 800 1,000 1,200

0

50

100

150

Number of Time Steps

Ti
m

e(
m

s)

GP = 100
GP = 200
GP = 300
GP = 400
GP = 500

Fig. 15. Timing results for the time-varying visualization using the in
situ method with varying numbers of pregenerated histograms sampled
(GP). Since each thread is simply computing summations over the
number of merged grid points, it scales linearly and is computationally
efficient.

variety of data types, while employing two data processing
schemes allows the system to handle various data scales.

6.1 Scalability
Using the on-the-fly scheme with GPU acceleration, the data
scales that desktop computers can handle depend on the
number of data entities (sample size × time steps). The sys-
tem can handle around ∼ 1 billion data entities in under a
few seconds when requesting a time-varying representation.
Limits can be pushed further by utilizing multiple GPUs
or even a distributed setting which can process chunks of
particles simultaneously.

For larger data scales, the system can utilize our in situ
scheme. Since histograms are generated during simulation
time, they can represent information from massive numbers
of particles. While potentially limiting the ability to explore
trajectories (if the particle data is not available post hoc), the
larger sample size can be a huge advantage.

6.2 Future Work
Future work will involve further integration of these meth-
ods into the simulations in order to visualize trends directly
while they are running, further minimize expensive I/O
costs, and support preselection of data subsets to be saved
to disk. We can also improve the scheme for sampling
pregenerated histograms. For example, as each grid point
also represents a volumetric cell, which may overlap mul-
tiple sampling regions in our post-hoc system, we consider
weighting each merged grid point according to the fraction
of its volume which overlaps the sampling region.

7 CONCLUSION

Overall, this work presents an extension to our previous
work [5] on using spatially organized velocity histograms
to visualize motion. We have extended the capabilities of

the technique by generalizing it to any type of variable and
employed the use of isosurfaces to effectively visualize the
time-varying trends of distributions within the histograms.
By employing an on-the-fly scheme for small and medium-
scale datasets, and an in situ scheme for large-scale datasets,
we can handle a variety of simulation sizes. Furthermore,
we demonstrate the usefulness of the system using real
world datasets in the fields of fusion and particle accelerator
science and present performance tests to demonstrate its
interactive capabilities.

ACKNOWLEDGMENTS

We would like to thank our collaborators at the Princeton
Plasma Physics Laboratory who worked with us, specif-
ically Seung-Hoe Ku, Robert Hager, and Randy Michael
Churchill. We would also like to thank our collaborators
at the SLAC National Accelerator Laboratory for providing
the particle accelerator dataset. This research is sponsored
in part by the U.S. Department of Energy through grants
DE-SC0007443 and DE-SC0012610.

REFERENCES

[1] M. Adams, S.-H. Ku, P. Worley, E. D’Azevedo, J. Cummings,
and C.-S. Chang, “Scaling to 150k cores: Recent algorithm and
performance engineering developments enabling XGC1 to run at
scale,” Journal of Physics: Conference Series., vol. 180, no. 1, 2009.

[2] W. X. Wang, Z. Lin, W. M. Tang, W. W. Lee, S. Ethier, J. L. V.
Lewandowski, G. Rewoldt, T. S. Hahm, and J. Manickam, “Gyro-
kinetic simulation of global turbulent transport properties in toka-
mak experiments,” Phys. Plasmas, vol. 13, no. 19, p. 092505, 2006.

[3] O. Kononenko, L. Ge, K. Ko, Z. Li, C. K. Ng, and L. Xiao, “Progress
on the multiphysics capabilities of the parallel electromagnetic
ACE3P simulation suite,” in 31st International Review of Progress in
Applied Computational Electromagnetics (ACES), Mar 2015, pp. 1–2.

[4] C. S. Yoo, E. S. Richardson, R. Sankaran, and J. H. Chen, “A DNS
study on the stabilization mechanism of a turbulent lifted ethylene
jet flame in highly-heated coflow,” Proceedings of the Combustion
Institute, vol. 33, no. 1, pp. 1619–1627, 2011.

[5] T. Neuroth, F. Sauer, W. Wang, S. Ethier, and K.-L. Ma, “Scalable
visualization of discrete velocity decompositions using spatially
organized histograms,” in IEEE 5th Symposium on Large Data
Analysis and Visualization (LDAV), Oct 2015, pp. 65–72.

[6] R. M. Kirby, H. Marmanis, and D. H. Laidlaw, “Visualizing mul-
tivalued data from 2D incompressible flows using concepts from
painting,” in Proceedings of IEEE Visualization Conference, Oct 1999,
pp. 333–340.

[7] H. Obermaier and K. Joy, “Derived metric tensors for flow surface
visualization,” IEEE Transactions on Visualization and Computer
Graphics, vol. 18, no. 12, pp. 2149–2158, Dec 2012.

[8] J. L. Helman and L. Hesselink, “Representation and display of
vector field topology in fluid flow data sets,” Computer, vol. 22,
no. 8, pp. 27–36, Aug 1989.

[9] N. Ihaddadene and C. Djeraba, “Real-time crowd motion analy-
sis,” in ICPR 19th International Conference on Pattern Recognition,
Dec 2008, pp. 1–4.

[10] A. Romanoni, M. Matteucci, and D. G. Sorrenti, “Background sub-
traction by combining temporal and spatio-temporal histograms
in the presence of camera movement,” Machine Vision and Applica-
tions, vol. 25, no. 6, pp. 1573–1584, Dec 2014.

[11] N. Dalal, B. Triggs, and C. Schmidi, “Human detection using
oriented histograms of flow and appearance,” Computer Vision -
ECCV, vol. 3952, pp. 428–441, Dec 2006.

[12] C. Jung, L. Hennemann, and S. Raupp Musse, “Event detection
using trajectory clustering and 4-D histograms,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 18, no. 11, pp.
1565–1575, Nov 2008.

[13] C. Tominski, S. Gladisch, U. Kister, R. Dachselt, and H. Schumann,
“A survey on interactive lenses in visualization,” in EuroVis -
STARs, R. Borgo, R. Maciejewski, and I. Viola, Eds. The Euro-
graphics Association, 2014.



1077-2626 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2016.2642103, IEEE
Transactions on Visualization and Computer Graphics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[14] C. Wittenbrink, A. Pang, and S. Lodha, “Glyphs for visualizing
uncertainty in vector fields,” IEEE Transactions on Visualization and
Computer Graphics, vol. 2, no. 3, pp. 266–279, Sep 1996.

[15] M. Hlawatsch, P. Leube, W. Nowak, and D. Weiskopf, “Flow radar
glyphs - static visualization of unsteady flow with uncertainty,”
IEEE Transactions on Visualization and Computer Graphics, vol. 17,
no. 12, pp. 1949–1958, Dec 2011.

[16] E. Marsch, X.-Z. Ao, and C.-Y. Tu, “On the temperature anisotropy
of the core part of the proton velocity distribution function in the
solar wind,” Journal of Geophysical Research, vol. 109, p. A04102,
2004.

[17] M. S. Paoletti, M. E. Fisher, K. R. Sreenivasan, and D. P. Lathrop,
“Velocity statistics distinguish quantum turbulence from classical
turbulence,” Physical Review Letters, vol. 101, p. 154501, Oct. 2008.

[18] M. Salewski, B. Geiger, A. S. Jacobsen, M. Garcı́a-Muñoz, W. Hei-
dbrink, S. B. Korsholm, F. Leipold, J. Madsen, D. Moseev, S. K.
Nielsen et al., “Measurement of a 2D fast-ion velocity distribution
function by tomographic inversion of fast-ion D-alpha spectra,”
Nuclear fusion, vol. 54, no. 2, p. 023005, 2014.

[19] J. Kehrer and H. Hauser, “Visualization and visual analysis of
multifaceted scientific data: A survey,” IEEE Transactions on Vi-
sualization and Computer Graphics, vol. 19, no. 3, pp. 495–513, Mar
2013.

[20] D. A. Kozak, T. H. Stievater, M. W. Pruessner, and W. S. Rabi-
novich, “Waveguide modal analysis using an FFT spectrogram
technique: Application to mode filters,” in Advanced Photonics 2016
(IPR, NOMA, Sensors, Networks, SPPCom, SOF). Optical Society
of America, 2016, p. JTu4A.3.

[21] Y. Ojima, E. Nakamura, K. Itoyama, and K. Yoshii, “A hierarchical
bayesian model of chords, pitches, and spectrograms for multip-
itch analysis,” in International Society for Music Information Retrieval
Conference (ISMIR), 2016, pp. 309–315.

[22] A. D. Luca, M. Contu, S. Hristov, L. Daniel, M. Gashinova, and
M. Cherniakov, “FSR velocity estimation using spectrogram,” in
17th International Radar Symposium (IRS), May 2016, pp. 1–5.

[23] R. Rekapalli and R. Tiwari, “Singular spectral analysis based
filtering of seismic signal using new weighted eigen spectrogram,”
Journal of Applied Geophysics, vol. 132, pp. 33–37, 2016.

[24] B.-R. Choi, W. Nho, T. Liu, and G. Salama, “Life span of ventricular
fibrillation frequencies,” Circulation research, vol. 91, no. 4, pp. 339–
345, 2002.

[25] D. Kao, J. L. Dungan, and A. Pang, “Visualizing 2D probability
distributions from EOS satellite image-derived data sets: a case
study,” in Proceedings of IEEE Visualization Conference, Oct 2001,
pp. 457–589.

[26] J. Woodring and H.-W. Shen, “Chronovolumes: A direct rendering
technique for visualizing time-varying data,” in Proceedings of the
Eurographics/IEEE TVCG Workshop on Volume Graphics, 2003, pp.
27–34.

[27] H. W. Shen, L. J. Chiang, and K.-L. Ma, “A fast volume rendering
algorithm for time-varying fields using a time-space partitioning
(tsp) tree,” in Proceedings of IEEE Visualization Conference, Oct 1999,
pp. 371–545.

[28] H. Krishnan, C. Garth, and K. Joy, “Time and streak surfaces for
flow visualization in large time-varying data sets,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 15, no. 6, pp.
1267–1274, Nov 2009.

[29] J. P. M. Hultquist, “Constructing stream surfaces in steady 3D
vector fields,” in Proceedings of IEEE Visualization Conference, Oct
1992, pp. 171–178.

[30] W. Widanagamaachchi, J. Chen, P. Klacansky, V. Pascucci, H. Kolla,
A. Bhagatwala, and P. T. Bremer, “Tracking features in embed-
ded surfaces: Understanding extinction in turbulent combustion,”
in IEEE 5th Symposium on Large Data Analysis and Visualization
(LDAV), Oct 2015, pp. 9–16.

[31] D. Thompson, J. A. Levine, J. C. Bennett, P. T. Bremer, A. Gyulassy,
V. Pascucci, and P. P. Pbay, “Analysis of large-scale scalar data
using hixels,” in IEEE Symposium on Large Data Analysis and
Visualization (LDAV), Oct 2011, pp. 23–30.

[32] NVIDIA, “Kepler GK110 whitepaper.” [Online]. Avail-
able: http://www.nvidia.com/content/PDF/kepler/NVIDIA-
Kepler-GK110-Architecture-Whitepaper.pdf

[33] W. E. Lorensen and H. E. Cline, “Marching cubes: A high res-
olution 3D surface construction algorithm,” SIGGRAPH Comput.
Graph., vol. 21, no. 4, pp. 163–169, Aug 1987.

Tyson Neuroth is a second year graduate stu-
dent at the University of California, Davis, study-
ing computer science and visualization under
Kwan-Liu Ma. His research interests include sci-
entific visualization, high performance comput-
ing, and human computer interaction. He re-
ceived a BS in computer science from the Uni-
versity of California, Davis.

Franz Sauer is a Ph.D. candidate at the Uni-
versity of California, Davis, studying computer
science and scientific visualization under Kwan-
Liu Ma. His research interests include data visu-
alization, large-scale scientific simulations, com-
puter graphics, and physics. Sauer received a
BS in physics from the California Institute of
Technology.

Dr. Weixing Wang is a principal research physi-
cist at the Princeton Plasma Physics Laboratory.
He received a Ph.D. in plasma physics from
the Graduate University for Advanced Studies
at the National Institute for Fusion Science in
Japan. His professional interests cover theory
and computation of plasma micro-instabilities,
turbulent and collisonal plasma transport in mag-
netic fusion experiments, physics of plasma con-
finement, gyrokinetic simulation, and advanced
simulation algorithms.

Dr. Stephane Ethier is a Principal Computa-
tional Physicist at the Princeton Plasma Physics
Laboratory. He is Deputy Head of the Computa-
tional Plasma Physics Group (CPPG) and leads
the High Performance Computing effort. He ob-
tained a Ph.D. in 1996 from the Institut National
de la Recherche Scientific (INRS) in Varennes,
Canada. Dr. Ethiers work covers all aspects of
high performance computing in support of PP-
PLs large-scale scientific codes.

C.S. Chang has led multiple major projects in
the past decade in both fusion physics and com-
putational science. He is the present head of the
SciDAC-3 Center for Edge Plasma Simulation
(EPSI), actively leading an extreme scale com-
puting research on multiscale self-organization
physics in magnetic confinement plasma. He is
a Fellow of the American Physical Society, and
member of numerous national and international
advisory and executive committees. Prior to join-
ing Princeton Plasma Physics Laboratory, C.S.

Chang was a Professor of Physics at Korea Advanced Institute of
Science and Technology, and jointly, a research faculty member with
rolling tenure at Courant Institute of Mathematical Sciences, NYU.

Kwan-Liu Ma is a professor of computer sci-
ence and the chair of the Graduate Group in
Computer Science (GGCS) at the University of
California, Davis, where he leads the VIDi re-
search group and directs the UC Davis Center
for Visualization. His research interests include
visualization, high-performance computing, and
user interface design. Ma received a Ph.D. in
computer science from the University of Utah.
He is an IEEE Fellow.


