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Introduction: Problem Statement

• In situ processing to support post hoc analysis → particle selection

• “Trial and error” based exploration
• Processing large datasets takes time

• Selection criteria are complex

• How can we…
• …leverage extra information available in situ?

• …make particle/feature selection fast and efficient?
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Introduction: Combustion Simulations and S3D

• Sandia National Laboratories

• S3D Combustion Simulation
• Field Data (very high resolution)

• Particle Data (more manageable)
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Background: Probability Distribution Functions

A data reduction tool that maintains distributions (i.e. a histogram)
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Background: Domain Subdivisions and Terminology

Insert a new level into the simulation hierarchy
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Methods: Overview and Workflow

• Modification to scientists’ normal workflow
• Construct PDFs from field data (in situ)

• Sort particles according to PDF sampling regions (in situ)

• Perform filtering on PDFs to select particles quickly (post hoc)
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Methods: PDF Generation (in situ)
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Methods

• Routines are called within each domain decomposition

• PDFs may be 1D, 2D, or 3D

• Representation used (to minimize storage):
• Dense matrix representation (frequency of all bins)

• Sparse matrix representation (frequency of non-zero bins + location)

Domain Decomposition

Sampling Regions 
(PDFs)

Dense: {𝑓1, 𝑓2, 𝑓3, … , 𝑓𝑛}

Sparse: {𝑓1, 𝑙1, 𝑓2, 𝑙2, … , 𝑓𝑚, 𝑙𝑚}
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Methods: Particle Sorting (in situ)
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Methods

• Routines are called within each domain decomposition

• Particle in the same sampling regions are placed in contiguous chunks

• A separate set of indexes point to the start of each chunk

Sampling Regions (PDFs)

{𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8, 𝑝9, 𝑝10, 𝑝11, 𝑝12, 𝑝13, … }

{𝑝1, 𝑝8, 𝑝10, 𝑝12, 𝑝6, 𝑝13, 𝑝7, 𝑝2, 𝑝4, 𝑝9, 𝑝11, 𝑝3, 𝑝5, … }

{𝑙1, 𝑙2, 𝑙3, … }
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Methods: Analysis and Visualization Tool (post hoc)
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Results: Test Dataset
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Results

• AirDodecane Dataset
• n-dodecane & diluted air

• 1400 x 1500 x 1000 cells

• ~40 million particles

• ~100 raw variables

• Large scale run on Titan
• 80,000 computing 

processors
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Results: Test Dataset
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Results

Distributions between variables describe system behavior
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Air/Fuel Mixture
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Select Locations:
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Domain Center:
Only low temperature 
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Results: Test Dataset
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Quickly select particles based on histogram distributions

Example of a selection based on 
distributions between mixture fraction, 

temperature, and scalar dissipation

Spatial resolution limited by 
PDF/sampling region size
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Results: PDF Storage Overhead
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• More bins → more storage

• In general (per timestep):
• ~100 MB for PDFs

• Several GB for particles

• PDFs use ~5% of particle storage

Performance testing: rerun simulation with varying sizes and parameters
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Results: PDF Generation Timing
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• Compare a simulation timestep
with time to compute PDFs

• Horizontal axis: same problem size 
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• Simulation: 1 – 10 seconds

• PDFs: 0.001 – 0.01 seconds40x40x40
3375 procs.

30x30x30
8000 procs.

24x24x24
15625 procs.

20x20x20
27000 procs.



DiscussionResultsMethodsBackgroundIntroduction

Results: Particle Sorting Timing
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• Storage overhead is negligible

• Sorting time depends on number 
of particles

• Sort time is a fraction of a ms
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Results: Post Hoc Particle Selection Timing
16

Results

0

5000

10000

15000

20000

25000

0 1500000 3000000 4500000 6000000

C
o

m
p

u
te

 T
im

e 
(m

s)

Number of Particles after Filtering

Filtered by PDFs Filtered by Particles
• Filtering by particles: time remains 

constant

• Filtering by PDFs:
• Time to process PDFs (constant)

• Time to load the particles (varies)

• Need to load almost the full 
dataset before the PDF scheme 
becomes slower
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Discussion: Limitations and Future Work

• Spatial resolution of PDFs/sampling regions limits selection
• Secondary filtering step done on particle data directly

• Data sizes will already be smaller from the PDF filtering

• Detailed particle analysis is done using other tools
• Add temporal analysis of particle selections

• Provide instant feedback when selection parameters change

• How can we use PDFs for importance driven time step selection?
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Discussion: Summary

• Hybrid in situ and post hoc approach to particle selection

• Combustion research as driving application

• Users can extract representative particle subsets
• Quickly and interactively to support “trial and error” based exploration

• Very little overhead to the simulation or storage requirements

• Currently working towards improving the system with Sandia Natl. Labs

• Later plans to generalize the tools for other applications
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Thank You
Questions?
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